Semantic-Kitti数据解析

本文介绍了Semantic-Kitti数据集的.bin和.label文件格式,详细讲解了二进制雷达数据的读取以及标签文件的内容。重点讨论了在处理数据集时遇到的坐标轴问题,即训练数据的xyz归一化与原始数据不匹配,导致模型应用时效果不佳。为解决此问题,文章提供了修正数据偏移量的代码,确保模型输入与原始数据一致。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. .bin文件

文件中保存的是二进制格式的四维雷达数据,包括x,y,z,intensity

打开文件:

def load_data_points(points_path):
    # cloud = np.fromfile(points_path, dtype=np.float32).reshape((-1, 4))
    cloud = np.fromfile(points_path, dtype=np.float32)
    return cloud

 2. .label文件

文件中保存对应每个点的label

打开文件:


def load_data_labels(label_path):
    labels = np.fromfile(label_path, dtype=np.uint32).reshape((-1, 1))
    return labels

 3. 我是切割自己数据集时发现坐标轴出现问题,训练的模型无法正确显示其效果,排查发现训练集数据xyz值做了归一化与原始数据不一致,导致应用模型时输入原始数据效果不佳。

重新加载所有训练集数据修正偏移量(我的是原始数据Z值减了1.34),代码如下:

import numpy as np
import argparse
import struct
import math
import os

EXTENSIONS_SCAN = ['.bin']
EXTENSIONS_LABEL = ['.label']


def is_scan(filename):
  return an
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值