1. .bin文件
文件中保存的是二进制格式的四维雷达数据,包括x,y,z,intensity
打开文件:
def load_data_points(points_path):
# cloud = np.fromfile(points_path, dtype=np.float32).reshape((-1, 4))
cloud = np.fromfile(points_path, dtype=np.float32)
return cloud
2. .label文件
文件中保存对应每个点的label
打开文件:
def load_data_labels(label_path):
labels = np.fromfile(label_path, dtype=np.uint32).reshape((-1, 1))
return labels
3. 我是切割自己数据集时发现坐标轴出现问题,训练的模型无法正确显示其效果,排查发现训练集数据xyz值做了归一化与原始数据不一致,导致应用模型时输入原始数据效果不佳。
重新加载所有训练集数据修正偏移量(我的是原始数据Z值减了1.34),代码如下:
import numpy as np
import argparse
import struct
import math
import os
EXTENSIONS_SCAN = ['.bin']
EXTENSIONS_LABEL = ['.label']
def is_scan(filename):
return an