R语言机器学习算法实战系列(四)随机森林算法分类器+SHAP值 (Random Forest)

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!

在这里插入图片描述

介绍

随机森林是常用的非线性用于构建分类器的算法,它是由数目众多的弱决策树构建成森林进而对结果进行投票判断标签的方法。

随机森林用于分类器的算法过程,

  1. 随机切分样本,然后选择2/3用于建模,剩余1/3用于验证袋外误差;
  2. 随机选择特征构建决策树,每个叶子节点分成二类;
  3. 根据GINI系数判断分类内部纯度程度,进行裁剪树枝;
  4. 1/3数据预测,根据每个决策树的结果投票确定标签;
  5. 输出标签结果,并给出OOB rate

随机的含义在于样本和特征是随机选择去构建决策树,这可以有效避免偏差,另外弱分类器组成强分类器也即是多棵决策树组成森林能提升模型效果。

教程

本文旨在通过R语言实现Random forest,总共包含:

  1. 下载数据
  2. 加载R包
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信学习者1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值