云端AI大模型&群体智慧后台架构思考

1 大模型的调研

1.1 主流的大模型

  • openai-chatgpt

  • 阿里巴巴-通义千问
    一个专门响应人类指令的大模型。我是效率助手,也是点子生成机,我服务于人类,致力于让生活更美好。
    aliyun.png

  • 百度-文心一言(千帆大模型)
    文心一言"是基于百度的深度学习平台飞桨和文心知识增强大模型开发的。它通过持续地从海量数据和大规模知识中进行融合学习,具备知识增强、检索增强和对话增强等技术特色。
    baidu.png

  • 字节跳动-云雀大模型
    在给出提示词的情况下依然不太聪明
    yunque.png

  • 字节跳动-扣子
    扣子为你提供了一站式 AI 开发平台 无需编程,你的创新理念都能迅速化身为下一代的 AI 应用 开始使用
    coze.png

    优点:测试过之后,在给出人设和回复逻辑之后,coze可以相对准确的将人类的模糊指令拆解为机器人对应的执行步骤。而且对大模型本身的对话功能也有很好的表现。
    缺点:还没有对应的API开放,暂时还在测试中。我已经填写问卷看看能不能申请到内侧的API。

1.2 提示词工程

提示词工程,或称Prompt Engineering,是一种专门针对语言模型进行优化的方法。其核心思想在于通过设计和调整输入的提示词(prompt),来引导这些模型生成更准确、更有针对性的输出文本。在与大型预训练语言模型如GPT-3、BERT等交互时,给定的提示词会极大地影响模型的响应内容和质量。
提示词工程关注于如何创建最有效的提示词,以便让模型能够理解和满足用户的需求。这可能涉及到对不同场景的理解、使用正确的词汇和语法结构,以及尝试不同的提示策略以观察哪种效果最佳。提示词可以简单如一个问题,复杂如一段描述性文本,包含了一系列精心选择的关键词或指令,旨在帮助模型更好地理解请求的任务或目标。
提示词工程具有广泛的应用场景,如信息检索、自然语言生成、智能键盘和聊天机器人、写作辅助工具等。在信息检索领域,提示词工程可以帮助用户更有效地查询信息,提高检索结果的准确性和相关性。在自然语言生成领域,通过为模型提供适当的提示词,可以控制生成文本的风格、内容和结构&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值