【线性代数的本质 - 系列合集】03 矩阵与线性变换(万字详文)

兄弟们,没看过视频的先滚去看视频!!!笔记是用来复习的

课程是blibli和youtube上的:
线性代数的本质 - 系列合集
Linear transformations and matrices | Chapter 3, Essence of linear algebra

开场

嘿 大家好!
如果要我选出一个主题,它不仅让线性代数的其他内容一目了然
又经常被初次学习线性代数的人忽视
我会选择这个——线性变换的概念以及它和矩阵的关系
在这里插入图片描述

在这期视频中,我只会集中讨论
这些变换在二维空间中长什么样
在这里插入图片描述

以及它们如何与矩阵向量乘法关联
尤其是展示一种不用死记硬背的考虑矩阵向量乘法的方法
在这里插入图片描述

线性变换

首先,我们先来解析“线性变换”这个术语
“变换”本质上是“函数”的一个花哨的说法,它也是接收输入的内容,并输出对应的结果。
在这里插入图片描述
函数的输入和输出如下,
在这里插入图片描述
特别地,在线性代数的情况下,我们考虑的是输入一个向量,并输出一个向量的变换。
在这里插入图片描述

既然“变换”和“函数”意义相同,为什么还要使用前者而不是后者?

在这里插入图片描述

因为使用“变换”是在暗示以特定方式来可视化这一输入-输出关系
一种理解“向量的函数”的方法是使用运动
在这里插入图片描述
如果一个变换接收一个向量并输出一个向量
我们想象这个输入向量移动到输出向量的位置
在这里插入图片描述

接下来,要理解整个变换
我们可以想象每一个输入向量都移动到对应输出向量的位置
因为将向量看作箭头时,同时考虑所有二维向量会变得非常拥挤
在这里插入图片描述
在这里插入图片描述

所以按照我上期视频所说的,一个好技巧是
每一个向量看作它的终点,而不是一个箭头
在这里插入图片描述
用这种方法考虑所有输入向量都移动到对应输出向量的位置时
我们只用看空间中的所有点移动到其他点的位置
在这里插入图片描述

二维空间变换这种情况下
为了更好地体会整个空间形状上的改变
我喜欢对无限网格上的所有点同时做变换
我有时也喜欢在背景中保留原始网格的副本
以便追踪终点与起点的相对关系
在这里插入图片描述

你得承认,各种各样对空间的变换所产生的效果是很美妙的
它们能给你一种挤压和变形空间的感觉
在这里插入图片描述

在这里插入图片描述
你也能想象到,任意一个变换可以非常复杂
在这里插入图片描述

但幸运的是,线性代数限制在一种特殊类型的变换上
这种变换更容易理解,称为“线性变换”

整个线性代数都是考虑“线性”的情况下

在这里插入图片描述

直观地说,如果一个变换具有以下两条性质,我们就称它是线性的
一是直线在变换后仍然保持为直线,不能有所弯曲
二是原点必须保持固定
在这里插入图片描述

举几个例子,现在所示的这个变换不是线性变换
因为直线变得弯曲了
在这里插入图片描述

而对于这一个变换,即便保持直线平直,它也不是一个线性变换
因为它移动了原点的位置
在这里插入图片描述

这一个变换保持原点不动,乍一看它好像保持直线平直
但实际并非如此,因为我只给你展示了水平和竖直的网格线
当你看看它对一条对角线作用时,很明显它不是一个线性变换
因为这条线变弯曲了在这里插入图片描述

总的来说,你应该把线性变换看作是“保持网格线平行且等距分布”的变换
在这里插入图片描述

部分线性变换很容易思考,比如关于原点的旋转
在这里插入图片描述

其他的稍显复杂,难以言表
你觉得应该如何用数值去描述这些线性变换呢?
在这里插入图片描述

比如说,你在通过编程制作动画和视频来教授这一主题
你应该给计算机什么样的计算公式
使得你给它一个向量的坐标,它能给你变换后向量的坐标呢?
在这里插入图片描述

实际结果是,你只需要记录两个基向量i帽和j帽变换后的位置

是变换后的基向量

在这里插入图片描述
其他向量都会随之而动
在这里插入图片描述

比如说,考虑坐标为(-1, 2)的向量v
这个向量就是-1与i帽之积和2与j帽之积的和
在这里插入图片描述

如果我们运用一些变换,并且跟随这三个向量的运动
网格线保持平行且等距分布的性质有一个重要的推论
变换后的向量v的位置,是-1与变换后的i帽之积,加上2与变换后的j帽之积
换句话说,向量v是i帽和j帽的一个特定线性组合
那么变换后的向量v也是变换后i帽和j帽的同样的线性组合
这意味着,你可以只根据变换后的i帽和j帽,就推断出变换后的v
这也是为什么我喜欢在背景中保留原始网格的副本
在这里插入图片描述

对于现在所示的变换,我们可以看出i帽落在坐标(1, -2)上
j帽落在x轴上,坐标为(3, 0)
也就是说,-1乘以i帽加上2乘以j帽所代表的向量
会落在-1乘以向量(1, -2)加上2乘以向量(3, 0)的位置上
简单运算之后,你就能推断出向量v一定落在向量(5, 2)上
因为这个过程非常重要,所以值得你停下来体会一番

兄弟们好好体会这个过程,会理解得更深!

在这里插入图片描述

实际上,因为我给你展示了整个变换的样子
你完全可以直接读出向量v在变换后落在坐标(5, 2)上
在这里插入图片描述

但是更炫酷的是,只要记录了变换后的i帽和j帽
我们就可以推断出任意向量在变换之后的位置
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

完全不必观察变换本身是什么样
在这里插入图片描述

一般的情况下,一个向量的坐标是(x, y)
变换后的这个向量就是x乘以变换后的i帽(1, -2)
加上y乘以变换后的j帽(3, 0)
在这里插入图片描述

简单运算之后你就知道它落在坐标(1x+3y, -2x+0y)上
在这里插入图片描述

运用这个公式,我给你任意一个向量,你都能告诉我它在变换后的位置
以上这些内容是在说
一个二维线性变换仅由四个数字完全确定
即变换后i帽的两个坐标与变换后j帽的两个坐标
是不是很酷?

酷!!

在这里插入图片描述

通常我们将这些坐标包装在一个2×2的格子中,称它为2×2矩阵
你可以把它的列理解为两个特殊的向量,即变换后的i帽和j帽
在这里插入图片描述

如果你有一个描述线性变换的2×2矩阵,以及一个给定向量
你想了解线性变换对这个向量的作用
你只需要取出向量的坐标
将它们分别与矩阵的特定列相乘,然后将结果相加即可
这与“缩放基向量再相加”的思想一致
在这里插入图片描述

更一般的情况下,我们来看看矩阵是[[a, b], [c, d]]时会发生什么
记住,矩阵在这里只是一个记号,它含有描述一个线性变换的信息
把第一列(a, c)看作是变换后的第一个基向量
把第二列(b, d)看作是变换后的第二个基向量
在这里插入图片描述

我们让这个变换[[a, b], [c, d]]作用于向量(x, y),结果是什么?
那就应该是x乘以(a, c)加上y乘以(b, d)
合并之后,得到向量(ax+by, cx+dy)
在这里插入图片描述

你甚至可以把它定义为矩阵向量乘法
这里矩阵放在向量左边,类似一个函数
即便你不展示其中直观的关键部分,高中生也能记住它
在这里插入图片描述

但是我们完全可以把矩阵的列看作变换后的基向量
把矩阵向量乘法看作它们的线性组合,这样想不是更有意思吗?

确实

在这里插入图片描述

接下来我们练习用矩阵描述一些线性变换

在这里插入图片描述

比如说,我们将整个空间逆时针旋转90度
在这里插入图片描述

那么i帽落在坐标(0, 1)上
j帽落在坐标(-1, 0)上
那么这个矩阵的列就分别是(0, 1)和(-1, 0)
在这里插入图片描述

如果想算出任意向量在逆时针旋转90度后的位置
在这里插入图片描述
你只需要把它与矩阵相乘即可
在这里插入图片描述

剪切

这里还有一个有趣的变换,它有个特殊的名称叫“剪切”
在这个变换里,i帽保持不变,所以矩阵第一列为(1, 0)
但是j帽移动到了坐标(1, 1),所以矩阵第二列为(1, 1)
在这里插入图片描述

(可能有些啰嗦,但还是说一下) 为了计算出给定向量剪切变换后的位置
在这里插入图片描述

只需要将矩阵与这个向量相乘即可
在这里插入图片描述

再比如说你想反过来看看问题
在这里插入图片描述

从一个矩阵出发,比如说一个以(1, 2)和(3, 1)为列的矩阵
你想推测出它代表的线性变换是什么样的
在这里插入图片描述

暂停思考一下,看看你能不能想象到
这里给出一种办法:首先将i帽移动到(1, 2),然后将j帽移动到(3, 1)
空间其他剩余部分随二者一起移动,以保持网格线平行且等距分布
在这里插入图片描述
在这里插入图片描述

如果变换后的i帽和变换后的j帽是线性相关
在这里插入图片描述

回顾上期视频的内容,意味着其中一个向量是另一个的倍数
那么这个线性变换将整个二维空间挤压到它们所在一条直线上
也就是这两个线性相关向量所张成的一维空间
在这里插入图片描述
在这里插入图片描述

总之,线性变换是操纵空间的一种手段
它保持网格线平行且等距分布,并且保持原点不动
在这里插入图片描述

令人高兴的是,这种变换只需要几个数字就能描述清楚
这些数字就是变换后基向量的坐标
在这里插入图片描述

以这些坐标为列所构成的矩阵为我们提供了一种描述线性变换的语言
在这里插入图片描述

而矩阵向量乘法就是计算线性变换作用于给定向量的一种途径
在这里插入图片描述

这里重要的一点是,每当你看到一个矩阵时
你都可以把它解读为对空间的一种特定变换
一旦真正消化了这些内容,你就在深刻理解线性代数上占据了极佳的位置
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

当你将矩阵看作空间的变换之后,此后几乎所有主题
从矩阵乘法,到行列式、基变换、特征值等都会更加容易理解
在这里插入图片描述

下期视频中,我就会开始讨论两个矩阵的乘积
到时候再见!
(下期视频:矩阵乘法与线性变换复合)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值