随机变量的期望

本篇笔记内容来源
数理统计学导论(原书第7版) 机械工业出版社


定义期望

X X X 是随机变量

 如果 X X X 是连续随机变量,具有 p d f   f ( x ) pdf\ f(x) pdf f(x) ,并且

∫ − ∞ ∞ ∣ x ∣ f ( x ) d x < ∞ \int^{\infty}_{-\infty}|x|f(x)\mathrm{d}x<\infty xf(x)dx<

那么 X X X 的期望是

E ( X ) = ∫ − ∞ ∞ x f ( x ) d x E(X)=\int^{\infty}_{-\infty}xf(x)\mathrm{d}x E(X)=xf(x)dx

如果 X 是连续随机变量,具有 p m f   p ( x ) pmf\ p(x) pmf p(x) ,并且

∑ x ∣ x ∣ p ( x ) < ∞ \sum_x|x|p(x)<\infty xxp(x)<

那么 X X X 的期望是

E ( X ) = ∑ x x p ( x ) E(X)=\sum_xxp(x) E(X)=xxp(x)


函数的期望

跟上面类似,设 Y = g ( X ) Y=g(X) Y=g(X)

连续情况

如果

∫ − ∞ ∞ ∣ g ( x ) ∣ f X ( x ) d x < ∞ \int^{\infty}_{-\infty}|g(x)|f_X(x)\mathrm{d}x<\infty g(x)fX(x)dx<

那么 Y Y Y 的期望为

E ( X ) = ∫ − ∞ ∞ g ( x ) f X ( x ) d x E(X)=\int^{\infty}_{-\infty}g(x)f_X(x)\mathrm{d}x E(X)=g(x)fX(x)dx

离散情况

如果

∑ x ∣ g ( x ) ∣ p X ( x ) < ∞ \sum_x|g(x)|p_X(x)<\infty xg(x)pX(x)<

那么 Y Y Y 的期望为

E ( X ) = ∑ x g ( x ) p X ( x ) E(X)=\sum_xg(x)p_X(x) E(X)=xg(x)pX(x)


期望算子是线性算子

g 1 ( X ) g_1(X) g1(X) g 2 ( X ) g_2(X) g2(X) 是随机变量 X X X 的函数. 假定 g 1 ( X ) g_1(X) g1(X) g 2 ( X ) g_2(X) g2(X) 的期望均存在. 于是,对于任何常数 k 1 k_1 k1 k 2 k_2 k2 k 1 g 1 ( X ) + k 2 g 2 ( X ) k_1g_1(X)+k_2g_2(X) k1g1(X)+k2g2(X) 的期望存在,且

E [ k 1 g 1 ( X ) + k 2 g 2 ( X ) ] = k 1 E [ g 1 ( X ) ] + k 2 E [ g 2 ( X ) ] E[k_1g_1(X)+k_2g_2(X)]=k_1E[g_1(X)]+k_2E[g_2(X)] E[k1g1(X)+k2g2(X)]=k1E[g1(X)]+k2E[g2(X)]

  • 17
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值