稀缺资源!99个大模型应用的案例,很值得看

精选99个标杆案例,划分为三大类别:45个"行业赋能"案例聚焦新型工业化、能源、医疗、政务等重点领域;46个"智能应用"案例覆盖天文、农业、化学等科学领域;8个"生态服务"案例包含智能数据标注、大模型评测及云边异构融合服务等创新平台。

案例1:

用户可以将收集到的数据内容直接输入系统,系统会自动识别包括图

文语义不规范等错误,并辅助提供可编辑的图文内容。基于此系统,不但能够

提升传媒工作者的生产内容的质量,还可以更全面的审查,保证信息传达的安全性和一致性,从而让传媒工作者“提早一小时下班”。

img

案例2:

通过品类构成与增速的细致研究,为品牌方提供科学的商品策略和价格制定指导。运用清华智谱、通义千问、

GPT3.5、GPT4 等大模型对大数据的训练和分析,提升价值密度,优化商品均价

与赠品价值策略,有效提升商品吸引力及销售效率。通过深入分析真实的净客单价,帮助品牌方精准定位价格策略,制定相应的市场对策。

img

案例三:

保险 AI 大模型助手在保险代理人与客户沟通中的广泛应用,提供实时问答支持和资料查询功能,简化了代

理人查询产品资料的流程,减少了沟通次数,提升了客户服务效率和质量,增强了客户体验和满意度。这些

创新技术和功能的实施,显著提升了代理人的工作效率和专业能力,有效支持了保险企业在竞争激烈的市场中保持竞争优势。

img

还有很多有趣的案例,蕴含各行各业,获取方式见文末

img

img

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

大模型目前在人工智能领域可以说正处于一种“炙手可热”的状态,吸引了很多人的关注和兴趣,也有很多新人小白想要学习入门大模型,那么,如何入门大模型呢?

下面给大家分享一份2025最新版的大模型学习路线,帮助新人小白更系统、更快速的学习大模型!

*有需要完整版学习路线*,可以微信扫描下方二维码,立即免费领取!

在这里插入图片描述

一、2025最新大模型学习路线

一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。

我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

图片

L1级别:AI大模型时代的华丽登场

L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。

图片

L2级别:AI大模型RAG应用开发工程

L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

图片

L3级别:大模型Agent应用架构进阶实践

L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。

图片

L4级别:大模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

图片

整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。

二、大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

图片

三、大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

图片

四、大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

图片

五、大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

图片

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方二维码,免费领取

在这里插入图片描述

****如果这篇文章对你有所帮助,还请花费2秒的时间**点个赞+收藏+分享,**让更多的人看到这篇文章,帮助他们走出误区。

### 机器学习中的训练集、验证集和测试集 #### 定义与作用 在机器学习项目中,数据被分割成三个主要部分:训练集、验证集和测试集。这些集合各自承担着不同的角色,在构建高效可靠的预测模型过程中发挥重要作用。 - **训练集**用于让算法从中学习模式并调整参数设置。通过反复迭代优化过程,使得模型能够尽可能好地拟合给定样本特征与其对应标签之间的映射关系[^1]。 - **验证集**则是在超参数调优阶段用来评估不同配置下模型表现的一个独立子集。它帮助开发者找到最佳架构设计而不至于过度适应当前观测到的数据分布特性[^2]。 - **测试集**最终目的是衡量经过充分训练后的系统对于未知实例的泛化水平。此环节严禁任何形式的信息泄露至前期开发周期内,从而确保所得结论具有统计意义且能真实反映实际应用场景下的预期效能。 #### 数据划分策略 针对不同类型的任务规模及资源状况,存在多种合理分配方案: - 当样本总量相对有限时(小于一万条记录),建议采用六比二比二的比例来分别指定上述三类用途所需材料的数量配额;而面对海量级资料库,则可适当放宽对非核心组成部分的要求,采取更为极端的比例如九十八比一比一向训练侧倾斜。 - 对于极其稀缺的情况,除了考虑缩小常规意义上的切分粒度外,还可以引入诸如k折交叉验证这样的高级技术手段以充分利用每一条有效信息源。 ```python from sklearn.model_selection import train_test_split, KFold # 基本拆分方式 X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.4, random_state=42) X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42) # k 折交叉验证示例 kf = KFold(n_splits=5) for train_index, val_index in kf.split(X): X_train_fold, X_val_fold = X[train_index], X[val_index] y_train_fold, y_val_fold = y[train_index], y[val_index] ``` #### 关联性分析 尽管这三个概念看似相互独立,但实际上彼此之间存在着紧密联系。整个工作流遵循一种逐步推进的原则——先利用大部分已知案例教导计算机理解规律本质,再借助中间过渡性的检验机制筛选出最优解候选者,最后凭借剩余未见过的新鲜素材考验其应对复杂多变环境的能力。这种由浅入深的学习路径不仅有助于提升整体准确性,同时也促进了系统的稳定性和鲁棒性发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值