应用大模型时,如何平衡部署成本高、幻觉问题与企业降本增效需求之间的矛盾?

◉ 在应用大模型时,如何平衡部署成本高、幻觉问题与企业降本增效需求之间的矛盾?

当前企业在部署大模型时面临以下几个主要挑战:

1.是模型部署的高成本和固有的幻觉问题

2.是企业对降本增效和收益提升的强烈需求

当大模型因幻觉问题必须配备人工修正团队时,如何处理问题爆发的非线性特征?现实中经常出现:模型或人力会有浪费,当集中出错时又处理不及时。这种波动性使得企业既无法很好的减少人力实现降本,又难以保证增效。是否有成熟的资源动态调配方案或技术补偿手段?或者说,测算大模型ROI时遇到难题:为应对幻觉问题预留的人力成本,会因问题爆发的突发性导致资源利用率低。这是否意味着当前阶段’模型+人工’的组合反而比纯人工成本更高?有哪些平衡准确率与人力成本的最佳实践?

*问题来自社区会员@gaoyb 某证券 软件研发,以下分享均来自社区同行,供大家参考

@某证券行业用户:

  1. 幻觉问题目前也有很多的解决方案,通过处理后可以达到较好的效果。

比如:

1)大模型的取数被固定在已经验证的规范的数据来源,比如wind、聚源的数据库。

2)优化智能体编排,智能体使用审计后固定模板,能较大程度降低幻觉和胡说八道的阐述。

3)通过类似用具备思考链的DeepSeek满血版的模型,模型给出严谨的结论,能较大程度避免逻辑的紊乱和幻觉的产生。

幻觉问题可能无法最终完美解决,但是通过评估业务场景的容错性,在业务场景能够容忍它的情况使用,希望这样是能够平衡人力与准确率。

@RoderickLi 某证券公司 AI算法工程师:

在证券行业应用大模型时,整体建设思路需要通过多层次的防范措施来有效应对“幻觉”问题。通过前置数据处理、严格的多模型验证、人工复核等手段,确保大模型的可靠性与准确性。针对不同容错度的场景,采取差异化的防范策略,以最大限度地降低“幻觉”带来的风险,合理平衡大模型幻觉问题与企业降本增效需求。具体而言,可以通过以下方式应对大模型幻觉问题:

多模型与人工结合:通过多模型交叉验证机制增强结果的稳定性与准确性,并结合人工审核确保对模型“幻觉”的有效抑制。

数据和知识库的精细化管理:确保数据的来源、质量和知识库的构建标准化,以避免“幻觉”问题在输入阶段被放大。通过锁定模型的应用边界,减少与外部环境的干扰。

实时反馈与优化:对模型的反馈和输出结果进行实时监控,及时发现和修正模型中的错误,不断优化模型的性能,降低“幻觉”发生的概率。

风险分级与防范:根据不同的应用场景,将“幻觉”风险进行分级,针对每个级别制定不同的防范策略。在低容忍度和零容忍场景中,需严格控制模型的使用,确保无误差产生。

@包万里 某证券 数据管理:

1.处理问题爆发非线性特征及资源调配、技术补偿方面

资源动态调配方案:建立实时监控系统,监测模型的输出质量和错误率等指标。当错误率上升时,自动增加人工修正团队的资源;在错误率较低时,则适当减少人工,将多余人力分配到其他任务。还可以采用多模型协同策略,优先用低成本模型处理简单任务,复杂场景再切换至大模型,以平衡性能与成本。

技术补偿手段 :运用检索增强生成(RAG)技术,强制模型引用私有知识库内容,降低幻觉率;采用思维链验证,通过多节点编排实现可追溯的推理路径,提高模型输出的准确性。

2.关于 “模型+人工” 与纯人工成本比较

一般不会出现 “模型+人工” 组合成本比纯人工更高的情况。虽然为应对幻觉问题预留人力会导致资源利用率低,但大模型在处理大量常规任务时效率远高于人工,能极大提高整体业务处理能力。从长远看,随着技术的进步和对模型优化的深入,模型出错率会降低,人力成本也会相应减少。

大模型岗位需求

大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》*

1.学习路线图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述
👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

**或扫描下方二维码领取 **

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值