第四章 线性方程组
4.1 齐次线性方程组
4.1.1 概念
- 齐次线性方程组
-
基础解系
齐次方程组Ax = 0解的线性无关的向量组,对应。可以线性组合表示出其他的解。
4.1.2 推论 & 定理
A是m行n列的矩阵
-
当m<n时(方程数少,未知量多)Ax = 0必有非0解。
-
当m=n时,Ax=0有非0解 <=> |A| = 0
-
若Ax=0 系数矩阵的秩r(A) = r < n,则Ax = 0有n-r个线性无关的解,且方程组的任意解都可以由这n-r个线性无关的解线性表出。
人话:基础解系有n-r个解向量。
4.1.3 求基础解系及通解方法
求齐次线性方程组对应的基础解系和通解:
- 对 系数矩阵 作 初等行变换,化成阶梯型矩阵(尽可能让分数出现得少一点)
- 自下向上变成行最简(主元为1,列不冲突)
- 提醒自己:n - r(A) = x,则表示基础解析有x个线性无关的解向量构成。有x个未知数是独立的自变量。
- 同解方程组,令自变量为(1,0) 或(0,1),得到的解就是基础解系(列向量)
- 基础解系 对应乘一个任意常数就是通解。
4.2 非齐次线性方程组
- 有解判定
- 解的结构
增广矩阵的表示:
A
‾
\overline{A}
A
意义:矩阵[A,b]称为方程组Ax = b的增广矩阵。
- 定理
A X = b 有解 < = > r ( A ) = r ( A ‾ ) AX = b 有解 <=> r(A) = r(\overline{A}) AX=b有解<=>r(A)=r(A)
A X = b 无解 < = > r ( A ) + 1 = r ( A ‾ ) AX = b 无解 <=> r(A) + 1 = r(\overline{A}) AX=b无解<=>r(A)+1=r(A)
- 解的结构
带有参数的方程组,如何加减消元?
——带参数的尽量挪到后面
-
解方程组
- 增广矩阵先化成阶梯矩阵,此时可以判断是否有解。
- 若有解,转化成行最简。-
- 根据第一个非零元素的列下标,确定其余列(自由变量)的值,设(1,0),(0,1)…可以得到齐次方程的通解。
- 将自由变量全部设成0,得到非齐次方程的特解。
- 结合特解和通解,a+k1a1 + k2a2 + …
4.3 公共解,同解
先挖个坑,强化的内容。
后面会不会补上也不知道
4.4 方程组的应用
求和矩阵A【】可以交换的矩阵
※设矩阵X和A可交换,AX = XA
※左右两边分别做矩阵的乘法,对应位置相等,利用移项得到一个系数矩阵。
解方程组AX = B
※先确定矩阵X的边长,若A不可逆,需要设X的每一个元素,求对应的方程组。
给出非齐次方程组的两个解α1 α2,求通解
※判定增广矩阵的秩,一般通过不等式 确定 秩的值
※利用 n - r(A) 求出自由变量的个数,设通解的形式为:α1 + kη1 + kη2 …
※由解的性质可以得到α2 - α1,就是其中一个齐次的通解η1