克拉默法则
齐次线性方程组
A m × n X = 0 A_{m×n}X=0 Am×nX=0
齐次线性方程组的解
齐次线性方程组的解是使A的列向量组合为0的线性组合系数。
基础解系
则称向量组
ξ
1
,
ξ
2
,
.
.
.
,
ξ
n
−
r
\xi_1,\xi_2,...,\xi_{n-r}
ξ1,ξ2,...,ξn−r是AX=0的基础解系。
条件2等价于“r(A)=r”,即线性无关解向量的个数为n-r,满足r(A)+线性无关解的个数=n(未知量个数)。
解的性质
有解的条件
基础解系向量个数与r(A)的关系
若A是m×n矩阵,r(A)=r<n,则齐次线性方程组AX=0存在基础解系,且基础解系有n-r个线性无关解向量组成,故“基础解系向量个数+r(A)=n(未知量个数)”
通解
若
ξ
1
,
ξ
2
,
.
.
.
,
ξ
n
−
r
\xi_1,\xi_2,...,\xi_{n-r}
ξ1,ξ2,...,ξn−r是AX=0的基础解系,则
k
1
ξ
1
+
k
2
ξ
2
+
.
.
.
+
k
n
−
r
ξ
n
−
r
k_1\xi_1+k_2\xi_2+...+k_{n-r}\xi_{n-r}
k1ξ1+k2ξ2+...+kn−rξn−r
是AX=0的通解,其中
k
1
,
k
2
,
.
.
.
k
n
−
r
k_1,k_2,...k_{n-r}
k1,k2,...kn−r是任意常数。
非齐次线性方程组
A m × n x = b , ( b ≠ 0 ) A_{m×n}x=b ,(b\ne0) Am×nx=b,(b=0)
非齐次线性方程组的解
非齐次线性方程组的解是b可由A的列向量线性表出的表出系数。
解的性质
设
η
1
,
η
2
\eta_1,\eta_2
η1,η2是AX=b的两个解,
ξ
\xi
ξ是对应齐次方程组AX=0的解,则
A
(
η
1
−
η
2
)
=
0
,
A
(
η
1
+
k
ξ
)
=
b
A(\eta_1-\eta_2)=0,A(\eta_1+k\xi)=b
A(η1−η2)=0,A(η1+kξ)=b
AX=b有解的条件
通解
若AX=b有特接
η
\eta
η,对应的齐次线性方程组AX=0有基础解系
ξ
1
,
ξ
2
,
.
.
.
,
ξ
n
−
r
\xi_1,\xi_2,...,\xi_{n-r}
ξ1,ξ2,...,ξn−r则AX=b的通解为
k
1
ξ
1
+
k
2
ξ
2
+
.
.
.
+
k
n
−
r
ξ
n
−
r
+
η
k_1\xi_1+k_2\xi_2+...+k_{n-r}\xi_{n-r}+\eta
k1ξ1+k2ξ2+...+kn−rξn−r+η
其中
k
1
,
k
2
,
.
.
.
k
n
−
r
k_1,k_2,...k_{n-r}
k1,k2,...kn−r是任意常数。