三维点云学习(2)实现三维点云物体的K-Means聚类算法c++

一、采用的数据集
shapeNet数据集

二、运行环境
vs2017、pcl1.8.0

三、完整代码如下

//main.cpp
#include"KMeans.h"
int main()
{
	KMeans test(4, 10);//这里设置4个中心点(即4个聚类)
	//设置初始值,,中心点的坐标,如果设置的不合理,分割结果会有很大的影响
	test.centre_points_->points.push_back(pcl::PointXYZ(-0.186160, 0.006250, -0.111970));
	test.centre_points_->points.push_back(pcl::PointXYZ(-0.190970, - 0.030310, 0.076890));
	test.centre_points_->points.push_back(pcl::PointXYZ(-0.182430, 0.205440, - 0.117400));
	test.centre_points_->points.push_back(pcl::PointXYZ(-0.182630, 0.066600, - 0.034570));

	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
	std::vector<pcl::PointCloud<pcl::PointXYZ>> output_cloud;
	pcl::io::loadPCDFile("G:/VS_TEST/数据集/guitar_03467517/1abe78447898821e93f0194265a9746c.pcd", *cloud);
	std::cerr << "raw cloud size" << cloud->points.size() << std::endl;
	test.kMeans(cloud, output_cloud);

	for (int i = 0; i < 4; ++i)//代码第三行,设置几个中心点,这里就循环几次
	{
		//pcl::PointCloud<pcl::PointXYZ> cloud1;
		//cloud1 = output_cloud[i];
		std::cerr << "output_cloud[i].points.size()" << output_cloud[i].points.size() << std::endl;
		output_cloud[i].width = output_cloud[i].points.size();
		output_cloud[i].height = 1;
		output_cloud[i].resize(output_cloud[i].width * output_cloud[i].height);
		pcl::io::savePCDFile("G:/VS_TEST/Kmeans/Kmeans/results/guitar/kmeans" + std::to_string(i) + ".pcd", output_cloud[i]);
		//pcl::io::savePCDFile()
	}
	

	//std::cerr << "output_cloud[i].points.size()" << output_cloud[0].points.size() << std::endl;
	//output_cloud[0].width = output_cloud[0].points.size();
	//output_cloud[0].height = 1;
	//output_cloud[0].resize(output_cloud[0].width * output_cloud[0].height);
	//pcl::io::savePCDFile("G:/VS_TEST/Kmeans/Kmeans/results/kmeans" + std::to_string(0) + ".pcd", output_cloud[0]);
	std::cout << "Hello World!\n";
}


#pragma once
//Kmeans.h
#pragma once

#include <iostream>
#include <algorithm>
#include<pcl/point_cloud.h>
#include<pcl/io/pcd_io.h>
#include <pcl/common/centroid.h>
class KMeans
{
private:
	unsigned int max_iteration_;
	const unsigned int cluster_num_;//k
	double pointsDist(const pcl::PointXYZ& p1, const pcl::PointXYZ& p2);

public:

	pcl::PointCloud<pcl::PointXYZ>::Ptr centre_points_;
	//KMeans() = default;
	KMeans(unsigned int k, unsigned int max_iteration);
	void kMeans(const pcl::PointCloud<pcl::PointXYZ>::Ptr& cloud, std::vector<pcl::PointCloud<pcl::PointXYZ>> &cluster_cloud1);

	~KMeans() {}
};

//Kmeans.cpp
#include "KMeans.h"

double KMeans::pointsDist(const pcl::PointXYZ& p1, const pcl::PointXYZ& p2)
{
	//std::cerr << p1.x<<std::endl;
	//三维空间中的欧氏距离计算公式

	return std::sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y) + (p1.z - p2.z) * (p1.z - p2.z));

}

KMeans::KMeans(unsigned int k, unsigned int max_iteration) :cluster_num_(k), max_iteration_(max_iteration), centre_points_(new pcl::PointCloud<pcl::PointXYZ>)
{
}

void KMeans::kMeans(const pcl::PointCloud<pcl::PointXYZ>::Ptr& cloud, std::vector<pcl::PointCloud<pcl::PointXYZ>> &cluster_cloud1)
{

	if (!cloud->empty() && !centre_points_->empty())
	{
		unsigned int iterations = 0;
		double sum_diff = 0.2;
		std::vector<pcl::PointCloud<pcl::PointXYZ>>cluster_cloud;
		while (!(iterations >= max_iteration_ || sum_diff <= 0.05))//如果大于迭代次数或者两次重心之差小于0.05就停止
		//while ((iterations<= max_iteration_ || sum_diff >= 0.1))

		{
			sum_diff = 0;
			std::vector<int> points_processed(cloud->points.size(), 0);
			cluster_cloud.clear();
			cluster_cloud.resize(cluster_num_);
			for (size_t i = 0; i < cloud->points.size(); ++i)

			{
				if (!points_processed[i])
				{
					std::vector<double>dists(0, 0);
					for (size_t j = 0; j < cluster_num_; ++j)
					{
						dists.emplace_back(pointsDist(cloud->points[i], centre_points_->points[j]));
					}
					std::vector<double>::const_iterator min_dist = std::min_element(dists.cbegin(), dists.cend());
					unsigned int it = std::distance(dists.cbegin(), min_dist);//获取最小值所在的序号或者位置(从0开始)
					//unsigned int it=std::distance(std::cbegin(dists), min_dist);
					cluster_cloud[it].points.push_back(cloud->points[i]);//放进最小距离所在的簇
					points_processed[i] = 1;
				}

				else
					continue;

			}
			//重新计算簇重心
			pcl::PointCloud<pcl::PointXYZ> new_centre;
			for (size_t k = 0; k < cluster_num_; ++k)
			{
				Eigen::Vector4f centroid;
				pcl::PointXYZ centre;
				pcl::compute3DCentroid(cluster_cloud[k], centroid);
				centre.x = centroid[0];
				centre.y = centroid[1];
				centre.z = centroid[2];
				//centre_points_->clear();
				//centre_points_->points.push_back(centre);
				new_centre.points.push_back(centre);

			}
			//计算重心变化量
			for (size_t s = 0; s < cluster_num_; ++s)
			{
				std::cerr << " centre" << centre_points_->points[s] << std::endl;

				std::cerr << "new centre" << new_centre.points[s] << std::endl;
				sum_diff += pointsDist(new_centre.points[s], centre_points_->points[s]);

			}
			std::cerr << sum_diff << std::endl;
			centre_points_->points.clear();
			*centre_points_ = new_centre;

			++iterations;
		}
		std::cerr << cluster_cloud[0].size() << std::endl;
		std::cerr << cluster_cloud[1].size() << std::endl;

		cluster_cloud1.assign(cluster_cloud.cbegin(), cluster_cloud.cend());//复制点云向量

	}

}

四、结果展示

在这里插入图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值