GCN基础模型概述与实现(Python)

本文详细介绍了图卷积神经网络(GCN)的基本模型,包括其概述、图卷积计算方法、邻接矩阵变换及GCN变换原理。通过Python代码展示如何实现GCN,适用于节点分类和图数据的深度学习任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GCN基础模型概述与实现(Python)

图卷积神经网络(Graph Convolutional Network,GCN)是一种用于处理图数据的深度学习模型。GCN可以利用图结构中节点之间的关系进行信息传播和特征学习,适用于节点分类、图分类和节点嵌入等任务。本文将详细介绍GCN的基本模型概述、图卷积的基本计算方法、邻接矩阵的变换以及GCN的变换原理,并提供相应的Python代码实现。

一、GCN基本模型概述
GCN的基本模型是由Kipf和Welling在2016年提出的,它是一种半监督学习模型,可以在节点分类任务中进行训练。GCN的基本模型由多层图卷积层组成,每一层的输出作为下一层的输入,最后一层输出的节点特征可以用于节点分类。

二、图卷积的基本计算方法
图卷积的基本计算方法可以通过以下公式表示:
H ( l +

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值