目录
为什么ROS适合做自动驾驶系统开发
自动驾驶对系统框架的需求
- 高效的开发支持
- 模块的灵活配置
- 丰富的调试工具
-
By 何玮 百度自动驾驶资深架构师 专注于百度自动驾驶车载计算框架相关工作
ROS 高效的开发支持
快速的算法迭代要求ROS框架要能提供良好的开发模式

ROS 模块灵活配置

ROS 丰富的调试工具
自动驾驶系统涉及大量图像、点云处理算法,对于各种可视化工具有非常高需求,障碍物检测是否精准, 规划路径是否合理、定位是否正确,这些环节在调试过程中都需要可视化工具的支持
- 可视化调试工具
- 查看,存储以及回放工具
Autoware 自动驾驶方案Demo Show
Autoware 是基于ROS开发的一套完整的自动驾驶系统参考解决方案,提供了包括
- Sensing
- Localization
- Detection
- Prediction
- Planning
- Actuation
在内的自动驾驶模块实现
Autoware Quick Demo视频 (youtube 需要翻墙)

展示了Autoware自动驾驶方案中Sensing Localization Detection Prediction Planning Actuation 模块对应的Node节点以及它们之间的数据连接关系
ROS的缺点和演进
虽然ROS适合做自动驾驶系统的开发,但它并不适合作为产品化的自动驾驶解决方案,Apollo和ROS2分别对它的缺点做了如下演进
Apollo ROS演进
- 大数据传输性能
- 去中心化的网络消除单点风险
- 修改数据格式支持后向兼容
参考我的另外一篇博客 Apollo 自动驾驶平台Framework与Dreamview架构分析
ROS2 演进
- 多机器人的系统架构标准化
- 支持MCU
- Real-time Framework (需要OS和硬件的支持)
- 安全和高质量的网络连接服务
- 更结构化的系统模块比如: 生命周期管理器和静态配置
- Zeroconf – 多机通信0配置
- Protocol Buffers – 数据格式兼容
- ZeroMQ -分布式系统间基于消息队列的多线程网络库
- Redis -内存亦可持久化的日志型、Key-Value数据库
- WebSockets
- DDS (Data Distribution Service) – 军工级网络通信协议