原创 | 测量误差的处理

前言

一般来说,我们在进行测量活动时,被测物体的真实值或称真值是客观的,是在一定时间及空间条件下体现事物的真实数值,很难确切地表达,所以真值是难以被准确测量到的,简单来说,真值客观存在,但是永远无法准确测量出来。因此我们常用约定真值(下称真值)来表示物体的尺寸或者性状。而测得值是测量所得的结果,两者之间总会存在或多或少的差别,这一差别,就是测量误差。

一、误差的分类

1、按照误差的表示方法,可以将误差分为绝对误差,相对误差和引用误差三类,其中:

       ① 绝对误差:被测量的测得值与真值之差,即:绝对误差=测得值-真值,例如用2等量块来校准三坐标测量机,量块的标称值为600mm,测量机测量示值为600.0015mm,则绝对误=600.0015-600.0000=0.0015(mm),需要注意的是绝对误差是有正负之分的,且须正确的给出计量单位。公式中我们采用被校准仪器示值做被减数,标准器示值做减数,简单来说,谁更标准,谁级别更高,谁在后。

       ② 相对误差:指绝对误差与相应示值之比的百分数,即:相对误差=绝对误差/相应值×100%,相对误差可以比较确切的反应测量的准确程度,例如某被测电压表,在5V被测点的绝对误差0.01V,则相对误差=0.01V/5V×100%=0.2%,可见相对误差可以表示仪器在任何被测点的误差相对于该点的大小。相对误差也有正负之分,以百分数表示,无须计量单位。

       ③引用误差:指绝对误差与特定值(一般为测量范围上限值或量程)的比值,用百分数表示:即:引用误差=绝对误差/特定值(FS)×100%,引用误差是相对误差的另一种表示形式,同样以百分数来表示,有正负,无须计量单位。

2、按照误差的性质和特点,可以分为系统误差,随机误差和粗大误差:

      ①系统误差:在相同条件下多次测量同一量时,误差的符号保持恒定,或在条件改变时按某种确定规律而变化的误差。所谓确定的规律,意思是这种误差可以归结为某一个因素或几个因素的函数,一般可用公式、曲线或特定数值表来表达。

      ②随机误差:在实际相同条件下,多次测量同一量时,误差的绝对值和符号以不可预定的方式变化的误差。随机误差主要是由那些对测量值影响非常微小,又互不相关的多种随机因素共同造成的,以三坐标测量机为例,大地的振动,温度,湿度,周围的电磁场,操作人的操作水平等等,都是随机影响因素。一次测量的随机误差没有规律,不可预估,不能控制也不能用实验的方法加以消除。但是,随机误差在足够多次测量的总体上服从统计的规律。

      ③粗大误差:超出在规定条件下预期的误差叫粗大误差。也就是说,在一定的测量条件下,测量结果明显地偏离了真值。读数错误、测量方法错误、测量仪器有严重缺陷等原因,都会导致产生粗大误差。粗大误差明显地歪曲了测量结果,应予剔除,所以,对应于粗大误差的测量结果称异常数据或坏值。我们可以通过拉依达准则,格拉布斯准则等方法来剔除异常值,从而消除粗大误差的影响。

       所以,在进行误差分析时,要估计的误差通常只有系统误差和随机误差。

二、测量误差的处理

我们在测量时,肯定是想让测量误差越小越好,尽可能的让我们的测量结果去贴近真值以保证测量的准确度尽可能的高,因此我们要想办法减小测量误差对测量结果的影响,前文中介绍了在剔除掉异常值,排除了粗大误差的影响后,需要估计的通常只有系统误差和随机误差,下文中我们将侧重点放在系统误差,来看一下系统误差的产生原因,减小方法以及修正方法。

1、系统误差的发现:在规定的测量条件下多次测量同一个被测量,从被测量的测得值与计量标准所复现的量值之差可以发现并得到恒定的系统误差的估计值;在测量条件改变时,例如随时间、温度、频率等条件改变时,测得值按某一确定的规律变化,可能是线性地或非线性地增长或减小,就可以发现测量结果中存在可变的系统误差。

2、减小系统误差的方法:

     ①采用修正的方法:对系统误差已知的部分,用对测得值进行修正的方法来减 小系统误差。例如三坐标测量块的值为30.0000mm,实际标准量块的真值为30.0008mm,则已知系统误差为-0.0008mm,所以修正值为0.0008mm,已修正的测得值等于未修正的测得值加修正值,即已修正的测得值为30.0000+0.0008=30.0008(mm)。可以看出,修正值等于测得的绝对误差的相反数。

     ②在实验过程中尽可能减少或消除一切产生系统误差因素的方法:例如在一起使用时,如果应对中的未能对中,应该调整到水平、垂直或者平行理想状态的未能调好,都会带来测量的系统误差,操作者应仔细调整,以便减小误差。又如在对模拟式仪表读数时,由于测量人员每个人的习惯不同会导致读数误差,采用了数字显示仪器后就消除了人为读数误差。

     ③选择使用系统误差抵消而不致带入测得值中的测量方法:我们对于系统误差的抵消,首先需要分析系统误差的可变性,便于选择合适的数学模型和对应的方法,数学模型的选择和原理较为复杂,这里暂时不做展开讨论,主要介绍如下对应方法:

恒定系统误差消除法:异号法,交换法,替代法

可变系统误差消除法:用对称测量法消除线性系统误差,半周期偶数测量法消除周期性系统误差

3、修正系统误差的方法:

     ① 在测得值上加修正值:

     修正值的大小等于系统误差估计值的大小,但符号相反。

图片

     式中:△ ——  测得值的系统误差估计值;

图片

——  未修正的测得值;

图片

——  标准值。

     要注意:当对测量仪器的示值进行修正时,△为仪器的示值误差

图片

     式中:△——  测得值的系统误差估计值;

图片

 ——  被评定的仪器的示值或标称值

图片

——  标准装置给出的标准值。

     则修正值C为

图片

     已修正的测得值Xc为

图片

②对测得值乘修正因子:

     修正因子Cr等于标准值与未修正测得值之比

图片

     已修正的测得值Xc为未修正测得值乘修正因子

图片

     ③画修正曲线:

     测得值的修正值随某个影响量的变化而变化,这种影响量例如温度、频率、时间、长度等,那么应该将在影响量取不同值时的修正值画出修正曲线,以便在使用时可以查曲线得到所需的修正值。例如我们的三坐标测量机在进行精度补偿作业时,软件所读取的补偿图就是一种修正曲线。实际画图时,通常要采用最小二乘法将各数据点拟合成最佳曲线或直线。

      ④制定修正值表:

      当测得值同时随几个影响量的变化而变化时,或者当修正数据非常多且函数关系不清楚等情况下,最方便的方法是将修正值制成表格,以便在使用时可以查表得到所需的修正值。

需要注意的是,修正值或修正因子的获得,最常用的方法是将测得值与计量标准的标准值比较得到,也就是通过校准得到。修正曲线往往还需要采用实验方法获得。修正值和修正因子都是有不确定度的,在获得修正值或修正因子时,需要评定这些值的不确定度。使用已修正的测得值时,该测得值的不确定度中应该考虑由于修正不完善引入的不确定度分量。关于不确定度的概念及相关评定方法会在后续的文章中进行介绍,这里不过多展开。

本文简单地介绍了测量误差的分类方法,着重介绍了系统误差的产生原因,减小并修正此误差的方法,希望能对大家的日常测量和校准工作带来帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值