原创 | 文 BFT机器人
在机器视觉和工业自动化领域,很少有比“深度学习”更引人注目的词汇。大约七年前左右,这个词随着一波庞大的营销炒作而出现,附带着“革命性”和“颠覆性”等形容词。几年后,尘埃落定,深度学习在自动化和制造领域的角色变得更加清晰。
当然,深度学习并非魔法,它不能解决所有自动化检测需求,也不是适用于所有类型应用的合适技术,它甚至不是一种独立的技术。相反,它是传统机器视觉和自动化检测技术的补充,现在深度学习已经在这个领域找到了一个更安静但仍然非常具有价值的位置。
· 深度学习的工作原理
在考虑将深度学习应用于某个应用程序之前,了解它的工作原理非常重要。离散的基于规则的机器视觉算法是使用具体的数字输入进行编程的,这些数字会被输入进传统的算法和卷积中。
而深度学习软件则通过分析已由人类专家标记和分类的数据(图像)来“学习”。标记和分类缺陷是这个过程中至关重要的