Description
一个匹配模式是由一些小写字母和问号’?‘组成的一个字符串。当一个由小写字母组成的字符串s,长度和匹配模式长度相同,并且在对应的每一位都相等或模式串相应位置是’?',则称字符串s与这个模式相匹配。例如:"abc"与"a?c"匹配地,但不与"a?b"或"abc?"相匹配。
现给你 M 个匹配模式,它们长度相同,问恰好与其中有 K 个模式相匹配的字符串有多少个?(答案模1000003)
Input
第一行,两个整数M,K。
下面有M行字符串,表示M个匹配模式。
Output
一行一个整数(模1000003之后)。
Sample Input
输入1:
2 2
a?
?b
输入2:
1 1
???
Sample Output
输出1:
1
输出2:
881343
注:881343 = 26^5 mod 1000003。
Data Constraint
1<= M <= 15
模式长度len:1 <= len<= 50
1 <= K <= M
模式中只含’a’ - ‘z’ 和 ‘?’
The Solution
首先注意题目求的是恰好 k k k个匹配。我们枚举出所有状态,然后看看有几个匹配,假如有 k k k个匹配就加进答案。
这个可以用状压
d
p
dp
dp来搞
但是,我们还可以用更高级的思想——容斥定理!
假如匹配了 k + 1 k+1 k+1个就要减,但是减多了 k + 2 k+2 k+2的加回来。于是就是一个容斥原理了。
假如匹配了 k + 1 k+1 k+1的方案数,对 k k k答案的贡献是要被减去的,但减去可不止一个!设方案为 v v v,次数就是 C k + 1 k C_{k+1}^{k} Ck+1k,于是当前匹配了 p p p个模式,贡献就是 C p k ∗ v ∗ w C_{p}^{k} * v * w Cpk∗v∗w。其中当 p − k p-k p−k为偶数时 w = 1 w=1 w=1。当然 p < k p<k p<k不做。剩下的一堆就是细节的处理,具体是怎样算出 v v v,这个很简单,看看有无矛盾,统计 ? ? ?个数就行了。
CODE
#include <cstdio>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <cstring>
#define fo(i,a,b) for (int i=a;i<=b;i++)
#define fd(i,a,b) for (int i=a;i>=b;i--)
#define N 55
#define mo 1000003
using namespace std;
int C[N][N],len[N];
int m,k,ans;
bool Flag[N];
char s[N][N],ch[N];
void Pre()
{
C[0][0] = 1;
fo(i,1,m)
{
C[i][0] = 1;
fo(j,1,i) C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % mo;
}
}
int main()
{
scanf("%d%d",&m,&k);
Pre();
fo(i,1,m)
{
scanf("%s",&s[i]);
len[i] = strlen(s[i]);
}
fo(i,1,(1 << m) - 1)
{
int tot = 1, cnt = 0,w;
memset(Flag,0,sizeof(Flag));
for (int tmp = i;tmp;tmp >>= 1,tot ++)
{
if (tmp & 1)
{
Flag[tot] = true;
cnt ++;
}
}
if (cnt < k) continue;
else if ((cnt - k) & 1) w = -1;
else w = 1;
int L = -1;
bool bz = true;
fo(j,1,m)
{
if (! Flag[j]) continue;
if (L == -1) L = len[j];
else
if (L != len[j])
{
bz = false;
break;
}
}
if (! bz) continue;
fo(j,0,L - 1) ch[j] = '?';
bz = true;
fo(j,1,m)
{
if (! Flag[j]) continue;
fo(k,0,L - 1)
{
if (s[j][k] == '?') continue;
if (ch[k] == '?') ch[k] = s[j][k];
else if (ch[k] != s[j][k])
{
bz = false;
break;
}
}
if (!bz) break;
}
if (! bz) continue;
int sum = 1;
fo(j,0,L - 1)
if (ch[j] == '?') sum = (long long)sum *26 % mo;
sum = (long long)sum * (long long)C[cnt][k] % mo;
ans = (ans + sum * w + mo) % mo;
}
printf("%d\n", ans);
return 0;
}