匹配数 (容斥&组合数)

Description

一个匹配模式是由一些小写字母和问号’?‘组成的一个字符串。当一个由小写字母组成的字符串s,长度和匹配模式长度相同,并且在对应的每一位都相等或模式串相应位置是’?',则称字符串s与这个模式相匹配。例如:"abc"与"a?c"匹配地,但不与"a?b"或"abc?"相匹配。
现给你 M 个匹配模式,它们长度相同,问恰好与其中有 K 个模式相匹配的字符串有多少个?(答案模1000003)

Input

第一行,两个整数M,K。
下面有M行字符串,表示M个匹配模式。

Output

一行一个整数(模1000003之后)。

Sample Input

输入1:

2 2
a?
?b

输入2:

1 1
???

Sample Output

输出1:

1

输出2:

881343
注:881343 = 26^5 mod 1000003。

Data Constraint

1<= M <= 15
模式长度len:1 <= len<= 50
1 <= K <= M
模式中只含’a’ - ‘z’ 和 ‘?’

The Solution

首先注意题目求的是恰好 k k k个匹配。我们枚举出所有状态,然后看看有几个匹配,假如有 k k k个匹配就加进答案。

这个可以用状压 d p dp dp来搞
但是,我们还可以用更高级的思想——容斥定理!

假如匹配了 k + 1 k+1 k+1个就要减,但是减多了 k + 2 k+2 k+2的加回来。于是就是一个容斥原理了。

假如匹配了 k + 1 k+1 k+1的方案数,对 k k k答案的贡献是要被减去的,但减去可不止一个!设方案为 v v v,次数就是 C k + 1 k C_{k+1}^{k} Ck+1k,于是当前匹配了 p p p个模式,贡献就是 C p k ∗ v ∗ w C_{p}^{k} * v * w Cpkvw。其中当 p − k p-k pk为偶数时 w = 1 w=1 w=1。当然 p < k p<k p<k不做。剩下的一堆就是细节的处理,具体是怎样算出 v v v,这个很简单,看看有无矛盾,统计 ? ? ?个数就行了。

CODE

#include <cstdio>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <cstring>
#define fo(i,a,b) for (int i=a;i<=b;i++)
#define fd(i,a,b) for (int i=a;i>=b;i--)
#define N 55
#define mo 1000003

using namespace std;

int C[N][N],len[N];
int m,k,ans;
bool Flag[N];
char s[N][N],ch[N];

void Pre()
{
	C[0][0] = 1;
	fo(i,1,m)
	{
		C[i][0] = 1;
		fo(j,1,i) C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % mo;
	}
}


int main()
{
	scanf("%d%d",&m,&k);
	Pre();
	fo(i,1,m)
	{
		scanf("%s",&s[i]);
		len[i] = strlen(s[i]);
	}
	fo(i,1,(1 << m) - 1)
	{
		int tot = 1, cnt = 0,w;
		memset(Flag,0,sizeof(Flag));
		for (int tmp = i;tmp;tmp >>= 1,tot ++)
		{
			if (tmp & 1)	
			{
				Flag[tot] = true; 
				cnt ++;
			}
		}
		if (cnt < k) continue;
		else if ((cnt - k) & 1) w = -1;
		else w = 1;
		int L = -1;
		bool bz = true;
		fo(j,1,m)
		{
			if (! Flag[j]) continue;
			if (L == -1) L = len[j];
			else
			if (L != len[j])
			{
				bz = false;
				break;
			}
		}
		if (! bz) continue;
		fo(j,0,L - 1) ch[j] = '?';
		bz = true;
		fo(j,1,m)
		{
			if (! Flag[j]) continue;
			fo(k,0,L - 1)
			{
				if (s[j][k] == '?') continue;
				if (ch[k] == '?') ch[k] = s[j][k];
				else if (ch[k] != s[j][k])
				{
					bz = false;
					break;	
				}	
			} 
			if (!bz) break;
		}
		if (! bz) continue;
		int sum = 1;
		fo(j,0,L - 1) 
		if (ch[j] == '?') sum = (long long)sum *26 % mo;
		sum =  (long long)sum * (long long)C[cnt][k] % mo;
		ans = (ans + sum * w + mo) % mo;
		
	}
    printf("%d\n", ans);
    return 0;

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值