Multiple View Geometry(多视图几何)学习笔记(7)—3D 射影几何之平面、直线和二次曲面的表示和变换

      3D 射影几何之点、平面、直线和二次曲面的表示和变换

1.点和射影变换
  3 维空间的一点 X X X用齐次坐标表示为一个 4 维矢量,其次矢量 X = ( X 1 , X 2 , X 3 , X 4 ) T X=(X_1,X_2,X_3,X_4)^T X=(X1,X2,X3,X4)T X 4 ≠ 0 X_4\neq 0 X4=0时表示 I R 3 IR^3 IR3中非齐次坐标为 ( X , Y , Z ) T (X,Y,Z)^T (X,Y,Z)T的点,其中:
X = X 1 / X 4 , Y = X 2 / X 4 , Z = X 3 / X 4 X=X_1/X_4,Y=X_2/X_4,Z=X_3/X_4 X=X1/X4,Y=X2/X4,Z=X3/X4

  当 X 4 = 0 X_4=0 X4=0的齐次点表示无穷远点.。

   I R 3 IR^3 IR3 上的射影变换是由非奇异 4 X 4 矩阵给出,它是关于齐 次 4 维矢盘的线性变换: H ′ = X H H'=XH H=XH,该映射是保线变换(直线被映射到直线)。

2.平面

平面的齐次表示是 4 维矢量:  π = ( π 1 , π 2 , π 3 , π 4 ) T \pi =(\pi_{1},\pi_{2},\pi_{3},\pi_{4})^{T} π=π1π2π3π4T

X X X 在平面 π \pi π 上则:  π T X = 0 \pi^TX=0 πTX=0

联合与关联关系

  • 平面可由一般位置的三个点或一条直线与一个点的联合来唯一确定(一般位置指三点不共线或在后一种情形下指点不在直线上)。
  • 两张不同的平面相交于唯一的直线。
  • 三张不同的平面相交子唯一的点。

三点确定一张平面

  设确定平面的三个点是:
X 1 = ( X ~ 1 1 ) , X 2 = ( X ~ 2 1 ) , X 3 = ( X ~ 3 1 ) X_{1}=\binom{\tilde{X}_{1}}{1},X_{2}=\binom{\tilde{X}_{2}}{1},X_{3}=\binom{\tilde{X}_{3}}{1} X1=(1X~1),X2=(1X~2),X3=(1X~3)

  则:
π = ( ( X ~ 1 − X ~ 3 ) × ( X ~ 2 − X ~ 3 ) − X ~ 3 T ( X ~ 1 × X ~ 2 ) ) \pi =\binom{\left ( \tilde{X}_{1}-\tilde{X}_{3} \right )\times \left ( \tilde{X}_{2}-\tilde{X}_{3} \right )}{-\tilde{X}_{3}^T\left ( \tilde{X}_{1}\times \tilde{X}_{2} \right )} π=(X~3T(X~1×X~2)(X~1X~3)×(X~2X~3))

三平面确定一点

  三张平面 π i \pi_i πi, 的交点$ X $可通过求以三张平面为行的 3x4 矩阵的(右)零空间直接计算出来:
[ π 1 T π 2 T π 3 T ] X = 0 \begin{bmatrix} \pi_{1}^{T}\\ \pi_{2}^{T}\\ \pi_{3}^{T} \end{bmatrix}X=0 π1Tπ2Tπ3TX=0

射影变换

  在点变换 X ′ = H X X'=HX X=HX下,平面变换为 π ′ = H − T π \pi'=H^{-T}\pi π=HTπ

平面上的点的参数表示

  在平面 π \pi π上的点 X X X可以写成:
X = M x X=Mx X=Mx

  其中 4 X 3 矩阵 M M M的列生成 π T \pi^T πT的秩为 3 的零空间,即 π T M = 0 T \pi^TM=0^T πTM=0T

###3.直线

  两点的连接或两平面的相交定义一条直线.在 3 维空间中,直线有 4 个自由度。

3.1零空间与生成子空间表示

  这种表示以直观的几何概念为基础。
  假定 A A A B B B是两(不重合)的空间点,那么连接这两点的直线由一个2X4矩阵 W W W的行的生成子空间表示:
W = [ A T B T ] W=\begin{bmatrix} A^T\\ B^T \end{bmatrix} W=[ATBT]

  那么:

  • W T W^T WT的生成子空间是在直线 λ A + μ B \lambda A+\mu B λA+μB上的点束。
  • W W W的2维右零空间的生成子空间是以直线为轴的平面束。

  类似的,一条直线的对偶表示是两平面的 P P P Q Q Q的交线。该直线表示为矩阵 W ∗ W^* W
W ∗ = [ P T Q T ] W^*=\begin{bmatrix} P^T\\ Q^T \end{bmatrix} W=[PTQT]

  其具有以下性质:

  • W ∗ T W^{*T} WT的生成子空间是以该直线为轴的平面束 λ ’ P + μ ’ Q \lambda’P+\mu’ Q λP+μQ
  • W ∗ W^* W的2维零空间的生成子空间是该直线上的点束。

  这两种表示以 W ∗ W T = W W ∗ T = 0 2 × 2 W^*W^T=WW^{*T}=0_{2\times2} WWT=WWT=02×2相联系。

补充

  • 零空间

  一个算子 A A A 的零空间是方程 A v = 0 Av = 0 Av=0的所有解 v v v的集合。它也叫做 A A A的核,核空间。如果算子是在向量空间上的线性算子,零空间就是线性子空间。因此零空间是向量空间。

  • 生成子空间

  设 α 1 , α 2 , . . . , α m \alpha _{1},\alpha _{2},...,\alpha _{m} α1,α2,...,αm R n R^n Rn中任一组向量。记 α 1 , α 2 , . . . , α m \alpha _{1},\alpha _{2},...,\alpha _{m} α1,α2,...,αm的所有线性组合的集合为 S p a n ( α 1 , α 2 , . . . , α m ) Span(\alpha _{1},\alpha _{2},...,\alpha _{m}) Span(α1,α2,...,αm),即:
S p a n ( α 1 , α 2 , . . . , α m ) = { k 1 α 1 + k 2 α 2 + . . . + k m α m ∣ k i ϵ R , i = 1 , 2 , . . . , m } Span(\alpha _{1},\alpha _{2},...,\alpha _{m})=\left \{ k_1\alpha _{1}+k_2\alpha _{2}+...+k_m\alpha _{m} |k_{i}\epsilon R,i=1,2,...,m\right \} Span(α1,α2,...,αm)={k1α1+k2α2+...+kmαmkiϵR,i=1,2,...,m}

  称 S p a n ( α 1 , α 2 , . . . , α m ) Span(\alpha _{1},\alpha _{2},...,\alpha _{m}) Span(α1,α2,...,αm)为向量组 α 1 , α 2 , . . . , α m \alpha _{1},\alpha _{2},...,\alpha _{m} α1,α2,...,αm生成的子空间。

3. 2 Plücker 矩阵

  这里一条直线由 4X4 反对称齐次矩阵表示。连接两点 A , B A,B AB的直线由矩阵 L L L表示,其元素为:
l i j = A i B j − B i A j l_{ij}=A_iB_j-B_iA_j lij=AiBjBiAj

  或用矢量记号等价地表示为:
L = A B T − B A T L=AB^T-BA^T L=ABTBAT

  若干主要的性质如下:

  • L L L的秩为 2。
  • 该表示具有描述一条直线所需要的 4 个自由度。
  • 矩阵 L L L与用来确定它的点 A , B A , B AB 无关。
  • 在点变换 X ′ = H X X'= HX X=HX下,该矩阵变换为 L ′ = H L H T L' = HLH^T L=HLHT时,即它是一个阶为 2 的张量。

  由两平面 P 、 Q P、Q PQ的交线确定的直线的对偶 Plücker 表示 L ∗ L^* L为:
L ∗ = P Q T − Q P T L^*=PQ^T-QP^T L=PQTQPT

  在点变换$ X’= HX 下 , 该 矩 阵 变 换 为 下,该矩阵变换为 L^{*’} = H{-T}L*H^{-1}$时,即它是一个阶为 2 的张量。

  • 由点X和直线L联合而确定的平面为:
    π = L ∗ X \pi=L^*X π=LX
    并且 L ∗ X = 0 L^*X=0 LX=0的充要条件是 X X X L L L上。
  • 由直线 L L L和平面 π \pi π相交而确定的点为:
    X = L π X=L\pi X=Lπ
    并且 L π = 0 L\pi=0 Lπ=0的充要条件是 L L L π \pi π上。

3. 3 Plücker 直线坐标

  Plücker 直线坐标是4X4反对称Plücker 矩阵 L L L的六个非零元素,即:
L = { l 12 , l 13 , l 14 , l 23 , l 42 , l 34 } \mathcal{L} =\left \{ l_{12} , l_{13} , l_{14} , l_{23} , l_{42} , l_{34} \right \} L={l12,l13,l14,l23,l42,l34}

因为 d e t L = 0 detL=0 detL=0其坐标满足方程:
l 12 l 34 + l 13 l 42 + l 14 l 23 = 0 l_{12} l_{34}+ l_{13} l_{42}+ l_{14} l_{23}=0 l12l34+l13l42+l14l23=0

结论1 两条直线 L \mathcal{L} L L ^ \hat{\mathcal{L}} L^共面(因而相交)的充要条件是 ( L ∣ L ^ ) = 0 (\mathcal{L}|\hat{\mathcal{L}})=0 (LL^)=0

  • 如果 ( L ∣ L ^ ) = 0 (\mathcal{L}|\hat{\mathcal{L}})=0 (LL^)=0, 则 6 维矢量 L \mathcal{L} L 仅表示 I P 3 IP^3 IP3中一条直线。

  • 假定两条直线$\mathcal{L} 和 和 \hat{\mathcal{L}} 分 别 是 平 面 分别是平面 P , , ,Q 和 和 \hat{P} , , ,\hat{Q}$的交线,那么:
    ( L ∣ L ^ ) = d e t [ P , Q , P ^ , Q ^ ] (\mathcal{L}|\hat{\mathcal{L}})=det[P,Q,\hat{P},\hat{Q}] (LL^)=det[P,Q,P^,Q^]
    同理两条直线的相交的充要条件是 ( L ∣ L ^ ) = 0 (\mathcal{L}|\hat{\mathcal{L}})=0 (LL^)=0

  • 如果 L \mathcal{L} L 是两平面 P , Q P , Q PQ 的交线 ,而 L ^ \hat{\mathcal{L}} L^是两点 A , B A, B AB的连线,那么:
    ( L ∣ L ^ ) = ( P T A ) ( Q T B ) − ( Q T A ) ( P T B ) (\mathcal{L}|\hat{\mathcal{L}})=(P^TA)(Q^TB)-(Q^TA)(P^TB) (LL^)=(PTA)(QTB)(QTA)(PTB)

补充

  • 反对称矩阵 设 A A A n n n维方阵,若有 A T = − A A^T=-A AT=A,则称矩阵 A A A为反对称矩阵。对于反对称矩阵,它的主对角线上的元素全为零,而位于主对角线两侧对称的元反号。

###4.二次曲面与对偶二次曲面

   I P 3 IP^3 IP3中,二次曲面由下列方程定义:
X T Q X = 0 X^TQX=0 XTQX=0

  其中 Q Q Q是一个 4X4 的对称矩阵。

  • 一个二次曲面有 9 个自由度。
  • 一般位置上的九个点确定一个二次曲面。
  • 如果矩阵 Q Q Q是奇异的,那么二次曲面是退化的 ,并可以由较少的点来确定。
  • 二次曲面定义了点和平面之间的一种配极。平面 π = Q X π = QX π=QX称为是 X X X 关于 Q Q Q的极平面。当 Q Q Q为非奇异并且 X X X在二次曲面之外时,极平面由过 X X X且与 Q Q Q相切的射线组成的锥与 Q Q Q相接触的点来定义。如果 X X X Q Q Q上,那么 Q X QX QX Q Q Q在点 X X X 的切平面。
  • 平面 π π π与二次曲面 Q Q Q的交线是二次曲线 C C C
  • 在点变化 X ′ = H X X'=HX X=HX,(点)二次曲面变化为:
    Q ′ = H − T Q H − 1 Q'=H^{-T}QH^{-1} Q=HTQH1

二次曲面的分类

  对角矩阵 D D D的符号差,记为 σ ( D ) \sigma (D) σ(D),定义为 D D D中+1的个数和-1的个数的差值。

σ \sigma σ对角线方程实现
44
2
0
(1,1,1,1)
(1,1,1,-1)
(1,1,-1,-1)
X 2 + Y 2 + Z 2 + 1 = 0 X^2+Y^2+Z^2+1=0 X2+Y2+Z2+1=0
X 2 + Y 2 + Z 2 = 1 X^2+Y^2+Z^2=1 X2+Y2+Z2=1
X 2 + Y 2 = Z 2 + 1 X^2+Y^2=Z^2+1 X2+Y2=Z2+1
无实点
球面
单叶双曲面
33
1
(1,1,1,0)
(1,1,-1,0)
X 2 + Y 2 + Z 2 = 0 X^2+Y^2+Z^2=0 X2+Y2+Z2=0
X 2 + Y 2 = Z 2 X^2+Y^2=Z^2 X2+Y2=Z2
一点 ( 0 , 0 , 0 , 1 ) T (0,0,0,1)^T (0,0,0,1)T
过原点的圆锥
22
0
(1,1,0,0)
(1,-1,0,0)
X 2 + Y 2 = 0 X^2+Y^2=0 X2+Y2=0
X 2 = Y 2 X^2=Y^2 X2=Y2
单条直线(Z-轴)
两平面 X = ± Y X=\pm Y X=±Y
11(1,0,0,0) X 2 = 0 X^2=0 X2=0平面 X = 0 X=0 X=0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不放弃的蜗牛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值