GTSAM总结

GTSAM 是一个在机器人领域和计算机视觉领域用于平滑(smoothing)和建图(mapping)的C++库。它与g2og2o不同的是,g2og2o采用稀疏矩阵的方式求解一个非线性优化问题,而GTSAM是采用因子图(factor graphs)和贝叶斯网络(Bayes networks)的方式最大化后验概率。现做资源整合如下:

1、github上的官方资源  https://github.com/borglab

2、GTSAM获取及安装 https://blog.csdn.net/u013925378/article/details/82258761

3、董靖的视频介绍(包含version4的某些新特性) https://www.sohu.com/a/133646392_715754

4、GTSAM在QT和KDevelop下的配置使用   https://blog.csdn.net/MissileDefense/article/details/56319421

5、GTSAM的笔记介绍  https://blog.csdn.net/qq_27262241/article/details/84291471#factor_23

6、G2o,GTSAM,Ceres,Tensorflow优化器的方法比较 https://blog.csdn.net/ziliwangmoe/article/details/86561157

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值