Online Learning、Offline Learning

本文探讨了在线算法与离线算法在玩俄罗斯方块游戏中的应用,扩展到机器学习领域,对比了离线学习(用完整数据训练模型)与在线学习(流式数据实时调整)的区别。重点介绍了这两种决策方式在数据驱动的场景下如何影响模型训练和决策制定。
摘要由CSDN通过智能技术生成

参考

举个例子, 在玩俄罗斯方块的时候, 你只能看到当前的方块是什么(有可能还能看到下一个方块是什么), 你需要根据当前的方块进行决策, 这种基于当前信息的决策过程就是在线算法(online algorithm). 而当你能知道整个方块序列是什么的时候, 你可能会有不一样的决策, 比如"这个方块可以放在左边这个地方, 这样和10步以后的那个方块就能凑在一起消掉", 这种基于全局信息的决策过程就是离线算法(offline algorithm).

在机器学习(包括深度学习)中, "方块"指的是数据. 我们通常做的是离线学习(offline learning), 即我们手中有全部的训练数据.,直接训练好模型,在用于测试使用;而在线学习(online learning)数据可能是以流式的形式, 我们一次只能看到部分的数据, 我们只能根据目前看到的这部分的数据进行训练,不断地进行调整。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值