1.什么是 DETR?
DETR(DEtection TRansformer) 是 Facebook AI(FAIR)于 2020 年提出的 端到端目标检测算法,它基于 Transformer 架构,消除了 Faster R-CNN、YOLO 等方法中的 候选框(Anchor Boxes) 和 非极大值抑制(NMS) 机制,使目标检测变得更简单、高效。
论文:End-to-End Object Detection with Transformers
2.DETR 的核心特点
- 基于 Transformer 进行目标检测,摆脱了 CNN 传统的 Anchor 机制
- 端到端训练,无需像 Faster R-CNN 额外使用 RPN 进行候选框生成
- 全局注意力机制(Self-Attention),可以建模远距离依赖关系,提高检测精度
- 自动去重,不需要 NMS 后处理步骤
- 适用于复杂场景,如密集目标检测