用光流法实现视频中特征点的跟踪

该博客介绍了如何利用光流法在视频中实现特征点的跟踪。通过在初始帧检测特征点,然后在后续帧中使用cv::calcOpticalFlowPyrLK函数寻找其新位置。由于物体或相机的运动,需要在相邻帧的特征点附近搜索。随着视频的播放,部分特征点可能会丢失,为此需要定期检测新的特征点以保持跟踪数量。
摘要由CSDN通过智能技术生成

在开始跟踪前,首先要在初始帧中检测特征点,之后在下一帧中尝试跟踪这些点。你必须找到新的图像帧中这些点的位置。很明显的,由于我们处理的是视频序列,很有可能特征点所在的物体已经移动过(运动也有可能是相机引起的)。因此,你必须在特征点的先前位置附近进行搜索,以找到下一帧中它的新位置。这正是cv::calcOpticalFlowPyrLK函数所实现的工作。你输入两个连续的图像帧以及第一幅图像中检测到的特征点数组,该函数将返回一组新的特征点为位置。为了跟踪完整的序列,你需要在帧与帧之间重复这个过程,不可避免地你也会丢失其中一些点,于是被跟踪的特征点数目会减少。为了解决这个问题,我们可以不时地检测新的特征值。

// OpticalFlow.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include <opencv2\opencv.hpp>
#include <opencv2\highgui\highgui.hpp>
#include <opencv2\imgproc\imgproc.hpp>

using namespace std;
using namespace cv;

//帧处理基类  
class FrameProcessor
{
public:
    virtual void process(Mat &input,Mat &ouput)=0;
};

class FeatureTracker:public FrameProcessor
{
    Mat gray;//当前灰度图像
    Mat gray_prev;//之前灰度图像
    //两幅图像间跟踪的特征点 0->1
    vector<Point2f>points[2];
    //跟踪的点的初始位置
    vector<Point2f>initial;
    vector<Point2f>features;//检测到的特征
    int max_count;//需要跟踪的最大特征数目
    double qlevel;//特征检测中的质量等级
    double minDist;//两点之间的最小距离
    vector<uchar>status;//检测到的特征的状态
    vector<float>err;//跟踪过程中的错误
public:
    FeatureTracker():max_count(500),qlevel(0.01),minDist(10.){}

    void process(Mat &frame,Mat &output)
    {
        //转换为灰度图像
        cvtColor(frame,gray,CV_BGR2GRAY);
        frame.copyTo(output);
        //1.如果需要添加新的特征点
        if(addNewPoints())
        {
            //进行检测
            detectFeaturePoints();
            //添加检测到的特征到当前跟踪的特征中
            points[0].insert(points[0].end(),features.
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值