一些Euclid空间上的定义

S S S R n \bold{R}^n Rn 上的点集,它在 R n \bold{R}^n Rn 上的补集 R n \ S \bold{R}^n\backslash S Rn\S 记为 S c S^c Sc.

内点:
存在 x \bold{x} x 的一个 δ \delta δ 领域 O ( x , δ ) O(\bold{x},\delta) O(x,δ) 完全落在 S S S 中.

内部:
S S S 的内点全体称为 S S S内部.记为 S o S^o So.

外点:
存在 x \bold{x} x 的一个 δ \delta δ 领域 O ( x . δ ) O(\bold{x}.\delta) O(x.δ) 完全不落在 S S S 中.

边界点:
x \bold{x} x 的任意 δ \delta δ 领域既包含 S S S 中的点,又包含不属于 S S S 的点.

边界:
S S S 的边界点的全体称为 S S S 的边界,记为 ∂ S \partial S S

孤立点:
存在 x \bold{x} x 的一个领域,其中只有 x \bold{x} x 点属于 S S S,则称 x \bold{x} x S S S 的孤立点

聚点:
x \bold{x} x 的任意领域内都含有 S S S 中的无限个点,则称 x \bold{x} x S S S 的聚点. S S S 的聚点的全体记为 S ′ S' S.

开集:
S S S 中的每一个点都是它的内点.

闭集:
S S S 中包含了它的所有的聚点.

闭包:
S S S 与它的聚点全体 S ′ S' S 的并集,记为 S ˉ \bar{S} Sˉ.即 S ∪ S ′ = S ˉ S\cup S'=\bar{S} SS=Sˉ


  1. 内点必属于 S S S,外点必不属于 S S S,边界点可能属于 S S S,也可能不属于 S S S
  2. 孤立点必是边界点
  3. 内点必是聚点
  4. 边界点如果不是孤立点,也必是聚点
  5. 聚点可能属于 S S S 也可能不属于 S S S

2021年3月21日20:01:06

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值