设 S S S 是 R n \bold{R}^n Rn 上的点集,它在 R n \bold{R}^n Rn 上的补集 R n \ S \bold{R}^n\backslash S Rn\S 记为 S c S^c Sc.
内点:
存在
x
\bold{x}
x 的一个
δ
\delta
δ 领域
O
(
x
,
δ
)
O(\bold{x},\delta)
O(x,δ) 完全落在
S
S
S 中.
内部:
S
S
S 的内点全体称为
S
S
S 的内部.记为
S
o
S^o
So.
外点:
存在
x
\bold{x}
x 的一个
δ
\delta
δ 领域
O
(
x
.
δ
)
O(\bold{x}.\delta)
O(x.δ) 完全不落在
S
S
S 中.
边界点:
x
\bold{x}
x 的任意
δ
\delta
δ 领域既包含
S
S
S 中的点,又包含不属于
S
S
S 的点.
边界:
S
S
S 的边界点的全体称为
S
S
S 的边界,记为
∂
S
\partial S
∂S
孤立点:
存在
x
\bold{x}
x 的一个领域,其中只有
x
\bold{x}
x 点属于
S
S
S,则称
x
\bold{x}
x 是
S
S
S 的孤立点
聚点:
x
\bold{x}
x 的任意领域内都含有
S
S
S 中的无限个点,则称
x
\bold{x}
x 是
S
S
S 的聚点.
S
S
S 的聚点的全体记为
S
′
S'
S′.
开集:
S
S
S 中的每一个点都是它的内点.
闭集:
S
S
S 中包含了它的所有的聚点.
闭包:
S
S
S 与它的聚点全体
S
′
S'
S′ 的并集,记为
S
ˉ
\bar{S}
Sˉ.即
S
∪
S
′
=
S
ˉ
S\cup S'=\bar{S}
S∪S′=Sˉ
- 内点必属于 S S S,外点必不属于 S S S,边界点可能属于 S S S,也可能不属于 S S S
- 孤立点必是边界点
- 内点必是聚点
- 边界点如果不是孤立点,也必是聚点
- 聚点可能属于 S S S 也可能不属于 S S S
2021年3月21日20:01:06