支持向量机SVM

1、简介

理解SVM,咱们必须先弄清楚一个概念:线性分类器。

    给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些数据分成两类。如果用x表示数据点,用y表示类别(y可以取1或者-1,分别代表两个不同的类),一个线性分类器的学习目标便是要在n维的数据空间中找到一个超平面(hyper plane),这个超平面的方程可以表示为( wT中的T代表转置):

                                                           

    可能有读者对类别取1-1有疑问,事实上,这个1-1的分类标准起源于logistic回归

    Logistic回归目的是从特征学习出一个0/1分类模型,而这个模型是将特性的线性组合作为自变量,由于自变量的取值范围是负无穷到正无穷。因此,使用logistic函数(或称作sigmoid函数)将自变量映射到(0,1)上,映射后的值被认为是属于y=1的概率。

    假设函数

    其中x是n维特征向量,函数g就是logistic函数。
    而 的图像是


    可以看到,将无穷映射到了(0,1)。
    而假设函数就是特征属于y=1的概率。

    从而,当我们要判别一个新来的特征属于哪个类时,只需求即可,若大于0.5就是y=1的类,反之属于y=0类。

    此外,只和有关,>0,那么而g(z)只是用来映射,真实的类别决定权还是在于。再者,当时,=1,反之=0。如果我们只从出发,希望模型达到的目标就是让训练数据中y=1的特征,而是y=0的特征Logistic回归就是要学习得到,使得正例的特征远大于0,负例的特征远小于0而且要在全部训练实例上达到这个目标。

    接下来,尝试把logistic回归做个变形。首先,将使用的结果标签y = 0y = 1替换为y = -1,y = 1,然后将)中的替换为b,最后将后面的替换为(即)。如此,则有了。也就是说除了yy=0变为y=-1外,线性分类函数跟logistic回归的形式化表示没区别。

2、一个例子

下面举个简单的例子,如下图所示,现在有一个二维平面,平面上有两种不同的数据,分别用圈和叉表示。由于这些数据是线性可分的,所以可以用一条直线将这两类数据分开,这条直线就相当于一个超平面,超平面一边的数据点所对应的y全是 -1 ,另一边所对应的y全是1

    这个超平面可以用分类函数表示,当f(x) 等于0的时候,x便是位于超平面上的点,而f(x)大于0的点对应 y=1 的数据点,f(x)小于0的点对应y=-1的点,如下图所示:

     注:有的资料上定义特征到结果的输出函数与这里定义的 实质是一样的。为什么?因为无论是,还是,不影响最终优化结果。下文你将看到,当我们转化到优化的时候,为了求解方便,会把yf(x)令为1,即yf(x)是y(w^x + b),还是y(w^x - b),对我们要优化的式子max1/||w||已无影响。

    (有一朋友飞狗来自Mare_Desiderii,看了上面的定义之后,问道:请教一下SVM functional margin 为=y(wTx+b)=yf(x)中的Y是只取1和-1 吗?y的唯一作用就是确保functional margin的非负性?真是这样的么?当然不是,详情请见本文评论下第43楼

    当然,有些时候,或者说大部分时候数据并不是线性可分的,这个时候满足这样条件的超平面就根本不存在(不过关于如何处理这样的问题我们后面会讲),这里先从最简单的情形开始推导,就假设数据都是线性可分的,亦即这样的超平面是存在的

    换言之,在进行分类的时候,遇到一个新的数据点x将x代入f(x) 中,如果f(x)小于0x类别赋为-1,如果f(x)大于0x的类别赋为1。

    接下来的问题是,如何确定这个超平面呢?从直观上而言,这个超平面应该是最适合分开两类数据的直线。而判定“最适合”的标准就是这条直线离直线两边的数据的间隔最大。所以,得寻找有着最大间隔的超平面。

3、最大间隔

对一个数据点进行分类,当超平面离数据点的“间隔”越大,分类的确信度(confidence)也越大。所以,为了使得分类的确信度尽量高,需要让所选择的超平面能够最大化这个“间隔”值。这个间隔就是下图中的Gap的一半

    通过由前面的分析可知:函数间隔不适合用来最大化间隔值,因为在超平面固定以后,可以等比例地缩放w的长度和b的值,这样可以使得的值任意大,亦即函数间隔可以在超平面保持不变的情况下被取得任意大。但几何间隔因为除上了,使得在缩放wb的时候几何间隔的值是不会改变的,它只随着超平面的变动而变动,因此,这是更加合适的一个间隔。那么,  换言之,这里要找的最大间隔分类超平面中的“间隔”指的是几何间隔。

   于是最大间隔分类器(maximum margin classifier)的目标函数可以定义为:

    同时需满足一些条件,根据间隔的定义,有

    其中,s.t.,即subject to的意思,它导出的是约束条件

    回顾下几何间隔的定义可知:如果令函数间隔等于1(之所以令等于1,是为了方便推导和优化,且这样做对目标函数的优化没有影响,至于为什么,请见本文评论下第42楼回复,则有 = 1 / ||w||且,从而上述目标函数转化成了

    这个目标函数便是在相应的约束条件下,最大化这个1/||w||,而1/||w||便是几何间隔。   

    如下图所示,中间的实线便是寻找到的最优超平面(Optimal Hyper Plane),其到两条虚线边界的距离相等,这个距离便是几何间隔,两条虚线间隔边界之间的距离等于2,而虚线间隔边界上的点则是支持向量。由于这些支持向量刚好在虚线间隔边界上,所以它们满足还记得我们把 functional margin 定为 1 了吗?上节中:处于方便推导和优化的目的,我们可以令=1),而对于所有不是支持向量的点,则显然有

    OK,到此为止,算是了解到了SVM的第一层,对于那些只关心怎么用SVM的朋友便已足够,不必再更进一层深究其更深的原理。

4、python实例

# -*- coding: utf-8 -*-
"""
Created on Wed Jul 13 16:31:19 2016

@author: irvingzhang
"""
import numpy as np
import pylab as pl
from sklearn import svm
#创建实例
np.random.seed(1)
X = np.r_[np.random.randn(20,2) - [2,2] ,np.random.randn(20,2) + [2,2]]
Y = [0] * 20 + [1] * 20
#分类器fit
clf = svm.SVC(kernel='linear')
clf.fit(X,Y)
#得到点和向量机的坐标
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(-5 , 5)
yy = a * xx - (clf.intercept_[0]) / w[1]
#画出经过支持向量机的超平面
b = clf.support_vectors_[0]
yy_down = a * xx + (b[1] - a * b[0])
b = clf.support_vectors_[-1]
yy_up = a * xx + (b[1] - a * b[0])

pl.plot(xx,yy,'k-')
pl.plot(xx,yy_down,'k--')
pl.plot(xx,yy_up,'k--')

pl.scatter(clf.support_vectors_[:,0],clf.support_vectors_[:,1],s=80,facecolors='none')
pl.scatter(X[:,0],X[:,1],c=Y,cmap=pl.cm.Paired)

pl.axis('tight')
pl.show()

结果展示:


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值