因果推断(六)外生变量、内生变量和内生性问题

外生变量

外生就是:模型内部任何自变量改变,都不会引起其变化的相对于模型的恒量。它们在模型或系统中,只影响其他变量,而不受其他变量的影响。在路径图中,只有指向其他变量的箭头,没有箭头指向它的变量均为外生变量。在结构方程模型中,外生潜变量通常用ξ表示。

例如模型 y = a ∗ f ( x ) y=a*f(x) y=af(x) a a a是一个外生变量。

内生变量

内生就是由模型内部的自变量决定的变量。内生变量是由模型系统决定同时,可能也对模型系统产生影响的变量,是具有某种概率分布的随机变量;

例如模型 y = a ∗ f ( x ) y=a*f(x) y=af(x) y y y是一个内生变量。

一个例子

在这里插入图片描述

内生性问题

若扰动项与解释变量不满足弱外生性假定(扰动项与解释变量同期不相关),我们称模型存在内生性问题。

导致内生性问题的原因主要有3种:

  1. 遗漏变量:遗漏可能与解释变量 Y Y Y相关的变量,本来应该加以控制,结果没有控制。此时变量会跑到扰动项 u u u中,造成扰动项与解释变量存在一定关系;
  2. 双向因果:解释变量 X X X和被解释变量 Y Y Y互相影响。假设扰动项 u u u发生正向冲击, Y Y Y会增加,因为 Y Y Y X X X互为因果,则 X X X也会发生变动。
  3. 测量误差

参考资料

[1]《微观经济理论:基本原理与扩展》沃尔特·尼克尔森
[2] 通俗理解:内生性VS外生性

### 关于 Stata 中内生性检验及其工具变量的使用 在 Stata 中进行内生性检验并应用工具变量的方法是一个复杂的过程,涉及多个步骤以确保模型的有效性一致性。以下是详细的说明以及代码示例。 #### 数据准备与初步回归 为了验证是否存在内生性问题,通常先运行一个简单的 OLS 回归,并观察残差与其他解释变量之间的关系。这一步骤有助于判断哪些变量可能是内生的[^3]。 ```stata sysuse auto, clear regress price weight length foreign predict resid_ols, residuals correlate resid_ols weight length foreign ``` 上述代码加载了一个内置的数据集 `auto` 并执行了初始回归。通过计算残差并与潜在内生变量的相关系数比较,可以初步评估这些变量是否可能受到未观测因素的影响[^1]。 #### 工具变量的选择标准 选择合适的工具变量至关重要。理想的工具变量应满足两个条件:一是它需与目标内生变量高度相关;二是它不应直接影响因变量(即仅通过影响内生变量间接作用)。例如,在研究教育年限对收入水平的影响时,“父母受教育程度”可以用作子女教育年限的一个合理工具变量[^2]。 #### 两阶段最小二乘法 (2SLS) 实施 一旦确认存在内生性问题并且选择了适当工具变量之后,则可以通过实施 Two-Stage Least Squares 方法来进行更精确参数估计: ```stata ivregress 2sls price (weight=length trunk) foreign estat firststage ``` 这里我们指定 `length` `trunk` 作为针对自变量 `weight` 的工具变量。命令 `ivregress` 执行的是基于所选工具变量调整后的线性回归分析。而后续调用的 `estat firststage` 提供有关第一阶段结果的信息,帮助检测是否有弱工具变量问题的存在[^4]。 #### 过度识别约束测试 当拥有超过必要数量的工具变量时,应该考虑做过度识别约束检验(Sargan 或 Hansen J 统计量),用来衡量额外引入那些多余工具变量是否会显著改变最终结论: ```stata estat overid ``` 此命令适用于 GMM 类型估计器下情况下的统计量报告。如果 p 值较大则表明当前设定中的所有工具变量都是有效的;反之若p值较小,则提示可能存在某些无效或者不够强效的工具变量需要重新审视修正. #### 弱工具变量诊断 对于怀疑可能出现弱工具变量的情形,可通过以下方式进一步考察其强度: ```stata estat endogenous ``` 该指令能够给出关于每个预测出来的内生变量相对于原始样本分布位置的具体数值描述,从而辅助判定实际操作层面遇到的问题所在。 #### 豪斯曼检验及其他异方差稳健版本 DWH 测试 最后还可以借助豪斯曼检验或者其他形式如Durbin-Wu-Hausman(DWH)等更为鲁棒的方式完成正式意义上的因果推断前的最后一道防线——即再次核实确实有必要采用IV策略而非传统OLS即可解决问题的情况: ```stata hausman . , constant sigmamore ``` 以上就是整个流程概述及相关具体实现细节介绍完毕! ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值