因果推断(八)有向无环图和do算子

前言

整个因果学科的学习框架之前已经梳理在了学习框架(潜在因果模型和结构因果模型)一文中,本文的内容是结构因果模型(SCM)里一部分。

从有向无环图说起

有向无环图(Directed Acyclic Graph:DAG)里的"有向"代表图里的连线是有箭头表示方向的,“无环”即没有环路,箭头上游是“父亲”,下游是“子代”。

对DAG的理解有两种观点:

  1. 是一个条件独立模型;
  2. 是一个数据生成机制。

x i x_i xi代表图中的节点, P ( x i ) P(x_i) P(xi)代表连续变量的概率密度函数和离散变量的概率函数,则DAG中随机变量的联合分布可以有如下的分解:
P ( x 1 , . . . , x i ) = ∏ i = 1 n P ( x i ∣ p a i ) P(x_1,...,x_i)=\prod_{i=1}^nP(x_i|pa_i) P(x1,...,xi)=i=1nP(xipai)
p a i pa_i pai表示 x i x_i xi的“父亲”集合。

以下图为例:
在这里插入图片描述
P ( X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X i , X j ) = P ( X 1 ) ∗ P ( X 2 ) ∗ P ( X 3 ∣ X 1 ) ∗ P ( X 4 ∣ X 1 , X 2 ) ∗ P ( X 5 ∣ X 2 ) ∗ P ( X i ∣ X 3 , X 4 ) ∗ P ( X 6 ∣ X i ) ∗ P ( X j ∣ X 4 , X 5 , X 6 ) P(X_1,X_2,X_3,X_4,X_5,X_6,X_i,X_j)= P(X_1)*P(X_2)*P(X_3|X_1)*P(X_4|X_1,X_2)*P(X_5|X_2)*P(X_i|X_3, X_4)*P(X_6|X_i)*P(X_j|X_4,X_5,X_6) P(X1,X2,X3,X4,X5,X6,Xi,Xj)=P(X1)P(X2)P(X3X1)P(X4X1,X2)P(X5X2)P(XiX3,X4)P(X6Xi)P(XjX4,X5,X6)
这样描述变量联合分布或者数据生成机制的模型,被称为“图模型”或“贝叶斯网络”。

do算子登场

DAG图上引入因果则需要do算子或者干预这一概念。如下图所示,干预意味着处置变量不再受其“父亲”变量的影响,因此一个干预变量不会再有任何一个进入它的有向边

用一个例子来理解:假设我们想研究评分对一个店铺客流量的影响,do算子或干预意味着,我们人为的把某个店铺的得分修改成t,即 P ( Y ∣ d o ( X i = t ) ) P(Y|do(X_i=t)) P(Ydo(Xi=t)),然后观测起客流量的分布。而店铺的 P ( Y ∣ X i = t ) P(Y|X_i=t) P(YXi=t)则表示原来用户自由打分的情况下,客流量的分布。
在这里插入图片描述

区分干预分布和条件分布

先给出结论:干预分布 ≠ \neq =条件分布,即 P ( . ∣ d o ( X i ) = x i ′ ) ≠ P ( . ∣ X i = x i ′ ) P(.|do(X_i)=x_i^{'})\neq P(.|X_i=x_i^{'}) P(.∣do(Xi)=xi)=P(.∣Xi=xi)

原因通过下图可以理解,干预分布下打断了混淆变量对处置的影响。
在这里插入图片描述

参考资料

[1] 因果推断简介之五:因果图
[2] 《因果推断与机器学习》郭若成

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值