-
定义:棋盘效应是由于反卷积的“不均匀重叠”(Uneven overlap)的结果。使图像中某个部位的颜色比其他部位更深:
-
具体原因:在反卷积操作时,如果卷积核(Kernel)大小不能被步长(Stride)整除时,反卷积输出的结果就会不均匀重叠:
-
在二维情况下棋盘效应更为严重,如下:
-
原则上,网络可以通过训练调整权重来避免这种情况。解决方法就是注意调整好卷积核(Kernel)大小与步长(Stride)的关系。
-
不重叠(图a: kernel <= stride)与均匀重叠(图b: kernel % stride == 0)均可避免此类情况:
-
还可以“先进行插值Resize操作,再进行反卷积操作”来避免:
-
该方式在超分辨率的相关论文中比较常见。例如我们可以用常见的图形学中常用的双线性插值和近邻插值以及样条插值来进行上采样。
棋盘效应(Checkerboard Artifacts)
最新推荐文章于 2024-04-11 17:49:43 发布
本文详细介绍了反卷积操作中的棋盘效应,即由于卷积核大小与步长不匹配导致的图像颜色不均匀问题。解决方法包括确保卷积核与步长的整除关系,以及通过先进行插值上采样后再进行反卷积来避免这种现象。这些策略在超分辨率等领域的实践中颇为常见。
摘要由CSDN通过智能技术生成