阿基米德螺旋线等距取点

曲线公式

极坐标形式:

r=a+b*\theta

笛卡尔坐标形式:

x=(a+b*\theta )*cos(\theta )

y=(a+b*\theta )*sin(\theta )

弧长公式

对极坐标形式积分可得弧长为:

L=a*\theta + \frac{1}{2}*b*\theta^2

将上式转换为一元二次方程:

\theta^2+\frac{2*a}{b}*\theta-\frac{2}{b}*L=0

解此一元二次方程可得\theta

\theta=\frac{-\frac{2*a}{b}+\sqrt{\frac{4*a^2}{b^2}+\frac{8}{b}*L}}{2}

等距取点

弧长L等距递增,代入\theta公式,再利用笛卡尔坐标公式即可得到该点的x、y坐标

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值