高等数学期末总复习 DAY 5. 罗尔定理证明题 拉格朗日、柯西中值定理 泰勒公式及麦克劳林公式

DAY 5.

1.罗尔定理

罗尔定理描述如下:

如果 R 上的函数 f(x) 满足以下条件:(1)在闭区间 [a,b] 上连续,(2)在开区间 (a,b) 内可导,(3)f(a)=f(b),则至少存在一个 ξ∈(a,b),使得 f’(ξ)=0。

在这里插入图片描述
例题1

若方程 a 0 x n + a 1 x n − 1 + . . . + a n − 1 x = 0 a_0x^n+a_1x^{n-1}+...+a_{n-1}x = 0 a0xn+a1xn1+...+an1x=0有一个正根, x = x 0 x = x_0 x=x0,试证方程 a 0 n x n − 1 + a 1 ( n − 1 ) x n − 2 + . . . + a n − 1 = 0 a_0nx^{n-1}+a_1(n-1)x^{n-2}+...+a_{n-1} = 0 a0nxn1+a1(n1)xn2+...+an1=0 必有一个小于 x 0 x_0 x0正根。

解:

f ( x ) = a 0 x n + a 1 x n − 1 + . . . + a n − 1 x f(x) = a_0x^n+a_1x^{n-1}+...+a_{n-1}x f(x)=a0xn+a1xn1+...+an1x

因为原方程有一个 x = x 0 x = x_0 x=x0的正根,所以有

f ( x 0 ) = a 0 x 0 n + a 1 x 0 n − 1 + . . . + a n − 1 x 0 f(x_0) = a_0x_0{^n}+a_1x_0{^{n-1}}+...+a_{n-1}x_0 f(x0)=a0x0n+a1x0n1+...+an1x0 = 0

而: f ( 0 ) = a 0 0 n + a 1 0 n − 1 + . . . + a n − 1 0 = 0 f(0) = a_00^n+a_10^{n-1}+...+a_{n-1}0 = 0 f(0)=a00n+a10n1+...+an10=0

由罗尔定理可知:必存在一 ξ ∈ ( 0 , x 0 ) \xi \in (0,x_0) ξ(0,x0) 使得 f ′ ( ξ ) = 0 f'(\xi) = 0 f(ξ)=0

所以 f ′ ( ξ ) = a 0 n ξ n − 1 + a 1 ( n − 1 ) ξ n − 2 + . . . + a n − 1 = 0 f'(\xi) = a_0n\xi^{n-1}+a_1(n-1)\xi^{n-2}+...+a_{n-1} = 0 f(ξ)=a0nξn1+a1(n1)ξn2+...+an1=0

ξ = x \xi = x ξ=x时原式证毕

2.拉格朗日定理

拉格朗日定理其实是罗尔定理的一种推广

如果函数 f ( x ) f(x) f(x)满足:1) 在闭区间[a,b]上连续;2) 在开区间(a,b)内可导;那么在(a,b)内至少有一点 ξ ( a < ξ < b ) \xi(a<\xi<b) ξ(a<ξ<b),使等式 f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b) - f(a) = f'(\xi) (b-a) f(b)f(a)=f(ξ)(ba)成立。

在这里插入图片描述
例题2

设 a > b >0, n>1 证明 n b n − 1 ( a − b ) < a n − b n < n a n − 1 ( a − b ) nb^{n-1}(a-b) < a^n - b^n <na^{n-1}(a-b) nbn1(ab)<anbn<nan1(ab)

解: 设 F ( x ) = x n F(x) = x^n Fx=xn

由拉格朗日定理可得:

F ( a ) − F ( b ) = a n − b n F(a)-F(b) = a^n - b^n F(a)F(b)=anbn = F ′ ( ξ ) ( a − b ) F'(\xi) (a-b) F(ξ)(ab)

因为: b < ξ < a b<\xi<a b<ξ<a

所以 b n − 1 ( a − b ) < a n − b n < a n − 1 ( a − b ) b^{n-1}(a-b) < a^n - b^n <a^{n-1}(a-b) bn1(ab)<anbn<an1(ab)

且 n > 1

可得: n b n − 1 ( a − b ) < a n − b n < n a n − 1 ( a − b ) nb^{n-1}(a-b) < a^n - b^n <na^{n-1}(a-b) nbn1(ab)<anbn<nan1(ab)

3.柯西中值定理

柯西中值定理是前两者的进一步推广,期末不常考,因为用柯西定理证明的题,用罗尔和拉格朗日都可以证明出来

在这里插入图片描述

柯西定理就是当我们把拉格朗日定理里面的 y y y 看成 f ( x ) f(x) f(x) , x x x 看成 g ( x ) g(x) g(x) 获得两个参数方程

{ y = f ( x ) x = g ( x ) \begin{cases} y = f(x) \\x = g(x) \\ \end{cases} {y=f(x)x=g(x)

得到: f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)} g(b)g(a)f(b)f(a)=g(ξ)f(ξ)

例题3

设 b>a>0 若 f ( x ) f(x) f(x)在【a,b】上连续,在(a,b)上可导,求证 ∃ ξ ∈ ( a , b ) \exists \xi \in (a,b) ξ(a,b) 使得 f ( b ) − f ( a ) = ξ f ′ ( ξ ) b a f(b)-f(a) = \xi f'(\xi) \frac{b}{a} f(b)f(a)=ξf(ξ)ab

解:

g ( x ) = ln ⁡ x , f ( x ) g(x) = \ln x,f(x) g(x)=lnx,f(x)

由柯西中值定理可知:

f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) = f ′ ( ξ ) 1 ξ \frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)} = \frac{f'(\xi)}{\frac{1}{\xi}} g(b)g(a)f(b)f(a)=g(ξ)f(ξ)=ξ1f(ξ)

⇒ \Rightarrow f ( b ) − f ( a ) = f ′ ( ξ ) 1 ξ ∗ g ( b ) − g ( a ) f(b)-f(a) = \frac{f'(\xi)}{\frac{1}{\xi}}*g(b)-g(a) f(b)f(a)=ξ1f(ξ)g(b)g(a)

⇒ \Rightarrow f ( b ) − f ( a ) = ξ f ′ ( ξ ) ln ⁡ b a f(b)-f(a) = \xi f'(\xi) \ln{\frac{b}{a}} f(b)f(a)=ξf(ξ)lnab 证毕

4.泰勒公式及麦克劳林公式

在这里插入图片描述
当泰勒公式其中的 x 0 = 0 x_0 = 0 x0=0的时候就变成了麦克劳林公式

有两个余项:

在这里插入图片描述

在这里插入图片描述

要记住一些常用函数的泰勒公式

在这里插入图片描述

  • 9
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值