高等数学期末总复习DAY18.常数项级数、正项级数、交错级数、绝对收敛

DAY18.

明天结束了

常数项级数

要清楚一个概念,以前我们学的数列和级数是两个不一样的概念,级数是求和的概念

Σ n = 1 ∞ U n \Sigma_{n =1}^{\infty} U_n Σn=1Un 求和

  1. 判断常数项级数是否收敛或发散

S n → s , n → ∞ S_n \to s , n \to \infty Sns,n则称该常数项级数收敛

Σ n = 1 ∞ U n \Sigma_{n =1}^{\infty} U_n Σn=1Un收敛,则 lim ⁡ n → ∞ U n = 0 \lim_{n \to \infty}U_n = 0 limnUn=0 (逆否命题也成立)

  1. 常用的常数项级数

Σ n = 1 ∞ a q n { ∣ q ∣ < 1 收 敛 ∣ q ∣ ⩾ 1 发 散 \Sigma_{n = 1}^{\infty} a q^{n} \begin{cases} |q| \lt 1 收敛 \\ |q| \geqslant 1 发散\end{cases} Σn=1aqn{q<1q1

调和级数

Σ n = 1 ∞ 1 n 发 散 \Sigma_{n = 1}^{\infty} \frac{1}{n} 发散 Σn=1n1

P级数

Σ n = 1 ∞ 1 n p { p > 1 收 敛 0 < p < 1 发 散 \Sigma_{n = 1}^{\infty} \frac{1}{n^{p}} \begin{cases} p >1收敛\\ 0 < p < 1 发散\end{cases} Σn=1np1{p>10<p<1

正项级数

  1. 比较审敛法

{ U n ⩽ V n : 大 级 数 收 敛 , 小 级 数 收 敛 ; 小 级 数 发 散 , 大 级 数 发 散 lim ⁡ ∞ U n V n = P : 可 得 Σ n = 1 ∞ U n 和 Σ n = 1 ∞ V n 有 相 同 的 敛 散 性 \begin{cases} U_n \leqslant V_n: 大级数收敛,小级数收敛;小级数发散,大级数发散 \\ \lim_{\infty} \frac{U_n}{V_n} = P :可得\Sigma_{n = 1}^{\infty} U_n 和 \Sigma_{n = 1}^{\infty} V_n有相同的敛散性\end{cases} {UnVn:,limVnUn=P:Σn=1UnΣn=1Vn

  1. 比值审敛法

lim ⁡ n → ∞ U n + 1 U n = P { P < 1 收 敛 P > 1 发 散 \lim_{n \to \infty} \frac{U_{n+1}}{U_n} = P \begin{cases} P < 1 收敛 \\ P > 1 发散\end{cases} limnUnUn+1=P{P<1P>1

交错级数

Σ n = 1 ∞ ( − 1 ) n − 1 U n = U 1 − U 2 + U 3 . . . . . . \Sigma_{n = 1}^{\infty} (-1)^{n-1} U_n = U_1 - U_2 + U_3 ...... Σn=1(1)n1Un=U1U2+U3......

解题一般使用莱布尼茨定理
分两步

  1. U n 是 递 减 的 级 数 即 U n > U n + 1 U_n 是递减的级数即 U_n > U_{n+1} UnUn>Un+1
  2. U n → 0 , u → 0 U_n \to 0 ,u \to 0 Un0,u0

Σ n = 1 ∞ ( − 1 ) n − 1 U n 收 敛 \Sigma_{n = 1}^{\infty} (-1)^{n-1} U_n收敛 Σn=1(1)n1Un

绝对收敛

Σ n = 1 ∞ U n 若 Σ n = 1 ∞ ∣ U n ∣ \Sigma_{n = 1}^{\infty} U_n 若\Sigma_{n = 1}^{\infty} |U_n| Σn=1UnΣn=1Un收敛,则原级数一定收敛,称为绝对收敛

Σ n = 1 ∞ U n 若 Σ n = 1 ∞ ∣ U n ∣ \Sigma_{n = 1}^{\infty} U_n 若\Sigma_{n = 1}^{\infty} |U_n| Σn=1UnΣn=1Un不收敛,但 Σ n = 1 ∞ U n \Sigma_{n = 1}^{\infty} U_n Σn=1Un收敛,称为条件收敛

例题

判断下列级数的收敛性

1 1 ⋅ 3 + 1 3 ⋅ 5 + . . . + 1 ( 2 n − 1 ) ( 2 n + 1 ) + . . . \frac{1}{1·3}+\frac{1}{3·5}+...+\frac{1}{(2n-1)(2n+1)} + ... 131+351+...+(2n1)(2n+1)1+...

解:原式等于

S n = 1 2 ( 1 − 1 3 ) + 1 2 ( 1 3 − 1 5 ) + . . . + 1 2 ( 1 2 n − 1 − 1 2 n + 1 ) S_n=\frac{1}{2}(1-\frac{1}{3})+\frac{1}{2}(\frac{1}{3}-\frac{1}{5})+...+\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1}) Sn=21(131)+21(3151)+...+21(2n112n+11)

S n = 1 2 ( 1 − 1 3 + 1 3 − 1 5 + . . . + 1 2 n − 1 − 1 2 n + 1 ) S_n = \frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n-1}-\frac{1}{2n+1}) Sn=21(131+3151+...+2n112n+11)

S n = 1 2 ( 1 − 1 2 n + 1 ) S_n = \frac{1}{2}(1-\frac{1}{2n+1}) Sn=21(12n+11)

lim ⁡ n → ∞ S n = 1 2 \lim_{n\to \infty} S_n = \frac{1}{2} limnSn=21

用到了常数项级数判断定理的第一点

即原级数收敛

例题2

1 + 1 + 2 1 + 2 2 + 1 + 3 1 + 3 2 + . . . + 1 + n 1 + n 2 + . . . 1+\frac{1+2}{1+2^2}+\frac{1+3}{1+3^2}+...+\frac{1+n}{1+n^2}+... 1+1+221+2+1+321+3+...+1+n21+n+...

解: U n = 1 + n 1 + n 2 U_n = \frac{1+n}{1+n^2} Un=1+n21+n

U n = 1 + n 1 + n 2 > 1 + n n + n 2 = 1 n U_n = \frac{1+n}{1+n^2}>\frac{1+n}{n+n^2}= \frac{1}{n} Un=1+n21+n>n+n21+n=n1

又因为 Σ n = 1 ∞ 1 n 为 调 和 级 数 发 散 \Sigma_{n = 1}^{\infty} \frac{1}{n} 为调和级数发散 Σn=1n1

根据比较审敛法的第一点则原级数 U n = 1 + n 1 + n 2 U_n = \frac{1+n}{1+n^2} Un=1+n21+n也发散

例题3

1 4 1 ! + 2 4 2 ! + . . . + n 4 n ! + . . . \frac{1^4}{1!}+\frac{2^4}{2!}+...+\frac{n^4}{n!}+... 1!14+2!24+...+n!n4+...

解:

lim ⁡ n → ∞ U n + 1 U n = ( n + 1 ) 4 ( n + 1 ) ! / n 4 n ! \lim_{n \to \infty}\frac{U_{n+1}}{U_n} = \frac{(n+1)^4}{(n+1)!}/\frac{n^4}{n!} limnUnUn+1=(n+1)!(n+1)4/n!n4

= lim ⁡ n → ∞ ( n + 1 ) 4 n 4 ⋅ n ! ( n + 1 ) ! =\lim_{n \to \infty} \frac{(n+1)^4}{n^4} · \frac{n!}{(n+1)!} =limnn4(n+1)4(n+1)!n!

= lim ⁡ n → ∞ 1 n + 1 → 0 =\lim_{n \to \infty}\frac{1}{n+1} \to 0 =limnn+110

又因为0<1

所以原级数收敛

  • 3
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值