正项级数及其审敛法

一般的常数项级数,各项可以为正数负数或零,我们把只有正数和零的级数称为正项级数。

定理1:正项级数收敛的充要条件是他的部分和数列{sn}有界

sn=u1+u2+...+un

定理2:若un之和与vn之和都是正项级数,对于任意n,un<=vn,若vn之和收敛,则un之和也收敛,反之,若un之和发散,则vn之和也发散

定理3:若un之和与vn之和都是正项级数,若

且vn之和收敛,则un之和收敛

且vn之和发散,则un之和发散

定理4:设un之和为正项级数,若

p大于1,包括为正无穷时,发散,小于1,收敛,等于1,两种情况都有可能

定理5:如果un之和为正项级数,若

当p小于1,收敛,大于1,发散,等于1,两种情况都有可能

定理6:若

则发散,若

则收敛

此外,可以使用等价无穷小或泰勒展开来化简或改变式子,然后再采用上面的某种方法。展开或替换后的式子与原式同散敛性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值