一般的常数项级数,各项可以为正数负数或零,我们把只有正数和零的级数称为正项级数。
定理1:正项级数收敛的充要条件是他的部分和数列{sn}有界
sn=u1+u2+...+un
定理2:若un之和与vn之和都是正项级数,对于任意n,un<=vn,若vn之和收敛,则un之和也收敛,反之,若un之和发散,则vn之和也发散
定理3:若un之和与vn之和都是正项级数,若
且vn之和收敛,则un之和收敛
若
且vn之和发散,则un之和发散
定理4:设un之和为正项级数,若
p大于1,包括为正无穷时,发散,小于1,收敛,等于1,两种情况都有可能
定理5:如果un之和为正项级数,若
当p小于1,收敛,大于1,发散,等于1,两种情况都有可能
定理6:若
则发散,若
则收敛
此外,可以使用等价无穷小或泰勒展开来化简或改变式子,然后再采用上面的某种方法。展开或替换后的式子与原式同散敛性