Mamba:3 记忆殿堂

 

Mamba自从出道就一直被拿来和Transformer对比,文章巨多,带着标题的爆炸性字样“颠覆Transfomer”,“全面包围”等等。文章深浅不一,小编认为其背后的设计思路以及演化过程更加重要。为此本专题将从山上有座庙开始,沿着RNN、SSM、S4、HIPPO一路走来。期间抛弃冗杂的文辞,以更接地气的模式协助读者打开新的逻辑思维。

SSM的三种表现形式

接着Mamab2的话题,SSM本身是连续模型,通过某些算法和特殊处理将其改造为能够支持离散输入的模型。其实转化为离散模型之后,它和RNN有了共同点。这个模型和人类记忆的习惯一样,就如同一遍看书,一边总结,一边感悟。

SSM的一个最为关键的特征就是它具备三种不同的表示形式:连续时间、循环模式(离散)和卷积模式。SSM可以在不同的范式之间切换,以便于更加适合特定应用场景的需求。

声明一下在传统SSM文献中,一般输入的符号采用u,输出为y,中间状态为x。之前比较那张比较漂亮的图,中间状态是h,这点读者知晓即可。

连续的SSM和离散的SSM在上文已经详细的介绍过了。这里重点介绍卷积的形态。首先先来回忆下离散SSM的公式如下:

Mamba is a high-performance Python package manager that provides a more intuitive and blazing-fast experience compared to the standard `pip`. It&#39;s built specifically for conda environments, which are widely used in scientific computing and data analysis. Mamba is designed to speed up the installation and management of packages by caching information and optimizing package resolution. When you encounter the "command not found" error for `mamba`, it typically means that your system isn&#39;t aware of the mamba executable or that the installation of mamba is incomplete. Here&#39;s how you can troubleshoot: 1. **Install mamba**: If you haven&#39;t installed mamba yet, you can do so by installing miniforge, a lightweight version of Anaconda. Download and run the installer from <https://docs.conda.io/en/latest/miniconda.html>, then activate the environment and install mamba using `conda install -c conda-forge mamba`. 2. **Add to PATH**: Make sure that the directory containing the mamba executable is added to your system&#39;s PATH. This usually happens automatically during installation, but you may need to manually edit your `.bashrc` or `.bash_profile` file if necessary. 3. **Check installation**: After installation, run `which mamba` in your terminal to see if it returns the path to the executable. If it doesn&#39;t, check the installation location and add it to your PATH. 4. **Reinstall**: If you&#39;ve already installed mamba but still get the error, try uninstalling and reinstalling.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值