huggingface transformers库中LlamaForCausalLM

新手入门笔记。

LlamaForCausalLM 的使用示例,这应该是一段推理代码。

from transformers import AutoTokenizer, LlamaForCausalLM

model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)

prompt = "Hey, are you conscious? Can you talk to me?"
inputs = tokenizer(prompt, return_tensors="pt")

# Generate
generate_ids = model.generate(inputs.input_ids, max_length=30)
tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]

参考:

Llama2
https://huggingface.co/docs/transformers/v4.32.1/en/model_doc/llama2#transformers.LlamaForCausalLM

### 部署30B参数规模的DeepSeek模型 为了在本地环境中成功部署30B参数规模的DeepSeek模型,需遵循一系列配置和操作流程。首先,确保环境满足最低硬件需求,特别是GPU内存和支持CUDA加速的能力[^2]。 #### 安装依赖 安装必要的Python包对于准备运行环境至关重要。推荐使用`conda`创建独立虚拟环境来管理这些依赖项: ```bash conda create -n deepseek python=3.9 conda activate deepseek pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 pip install transformers datasets ``` #### 下载预训练模型权重 由于该模型体积较大,建议通过Hugging Face平台下载预先训练好的模型权重文件。这可以通过命令行工具完成,也可以利用API接口自动化处理: ```python from huggingface_hub import snapshot_download snapshot_download(repo_id="openlm-research/open_llama", allow_patterns=["*.bin"]) ``` #### 加载并测试模型 一旦所有必需组件都已就绪,在实际应用之前应该先验证模型能否正常工作。下面是一个简单的例子展示如何加载模型并对输入文本进行推理预测: ```python import torch from transformers import LlamaForCausalLM, LlamaTokenizer device = "cuda" if torch.cuda.is_available() else "cpu" model_name_or_path = 'path_to_your_downloaded_model' tokenizer = LlamaTokenizer.from_pretrained(model_name_or_path) model = LlamaForCausalLM.from_pretrained( model_name_or_path, device_map='auto', ).to(device) input_text = "Once upon a time," inputs = tokenizer(input_text, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值