2023IMO预选题几何第5题

在锐角 △ A B C \triangle ABC ABC 中, ω ω ω 是外接圆, O O O 是外心. D D D, E E E 分别是 ω ω ω 上不同于 B B B, C C C 的点, 满足 B D BD BD A C AC AC, C E CE CE A B AB AB. 设直线 C O CO CO, A B AB AB 交于点 X X X, 直线 B O BO BO, A C AC AC 交于点 Y Y Y. 求证: △ B X D \triangle BXD BXD, △ C Y E \triangle CYE CYE 的外接圆有一个交点在直线 A O AO AO 上.

在这里插入图片描述
证明:

在这里插入图片描述

延长 A O AO AO ( O B C ) (OBC) (OBC) 于点 L L L, 过 L L L A L AL AL 的垂线, 交 ( B D L ) (BDL) (BDL) 于点 K K K. 倒角可知, ∠ B D K = ∠ B A C = ∠ B D C \angle BDK=\angle BAC=\angle BDC BDK=BAC=BDC, 因此 D D D, C C C, K K K 共线. 过 X X X X S XS XS 平行于 B D BD BD A O AO AO 于点 S S S, 设 B D BD BD C X CX CX 交于点 T T T, B D BD BD O L OL OL 交于点 T ′ T' T, 则 ∠ X S O = ∠ O T ′ T \angle XSO=\angle OT'T XSO=OTT, ∠ S X O = ∠ O T T ′ \angle SXO=\angle OTT' SXO=OTT. 倒角可知, ∠ O T ′ T = ∠ A B C \angle OT'T=\angle ABC OTT=ABC, ∠ O T T ′ = π − ∠ C D T − ∠ T C D = ∠ A B C \angle OTT'=\pi-\angle CDT-\angle TCD=\angle ABC OTT=πCDTTCD=ABC, 所以 ∠ O T ′ T = ∠ O T T ′ \angle OT'T=\angle OTT' OTT=OTT. 进而 B X S D BXSD BXSD 是等腰梯形, B B B, D D D, S S S, X X X 共圆. 倒角可知, ∠ L K C = ∠ L S D = π / 2 − ∠ B A C + ∠ A B C \angle LKC=\angle LSD=\pi/2-\angle BAC+\angle ABC LKC=LSD=π/2BAC+ABC, 因此 S S S ( D L K ) (DLK) (DLK) 上, 因此 B B B, L L L, K K K, D D D, S S S, X X X 共圆. 同理, 也在 ( C L Y ) (CLY) (CLY) 上, 证毕.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值