在锐角 △ A B C \triangle ABC △ABC 中, ω ω ω 是外接圆, O O O 是外心. D D D, E E E 分别是 ω ω ω 上不同于 B B B, C C C 的点, 满足 B D BD BD ⊥ A C AC AC, C E CE CE ⊥ A B AB AB. 设直线 C O CO CO, A B AB AB 交于点 X X X, 直线 B O BO BO, A C AC AC 交于点 Y Y Y. 求证: △ B X D \triangle BXD △BXD, △ C Y E \triangle CYE △CYE 的外接圆有一个交点在直线 A O AO AO 上.
证明:
延长 A O AO AO 交 ( O B C ) (OBC) (OBC) 于点 L L L, 过 L L L 作 A L AL AL 的垂线, 交 ( B D L ) (BDL) (BDL) 于点 K K K. 倒角可知, ∠ B D K = ∠ B A C = ∠ B D C \angle BDK=\angle BAC=\angle BDC ∠BDK=∠BAC=∠BDC, 因此 D D D, C C C, K K K 共线. 过 X X X 作 X S XS XS 平行于 B D BD BD 交 A O AO AO 于点 S S S, 设 B D BD BD 与 C X CX CX 交于点 T T T, B D BD BD 与 O L OL OL 交于点 T ′ T' T′, 则 ∠ X S O = ∠ O T ′ T \angle XSO=\angle OT'T ∠XSO=∠OT′T, ∠ S X O = ∠ O T T ′ \angle SXO=\angle OTT' ∠SXO=∠OTT′. 倒角可知, ∠ O T ′ T = ∠ A B C \angle OT'T=\angle ABC ∠OT′T=∠ABC, ∠ O T T ′ = π − ∠ C D T − ∠ T C D = ∠ A B C \angle OTT'=\pi-\angle CDT-\angle TCD=\angle ABC ∠OTT′=π−∠CDT−∠TCD=∠ABC, 所以 ∠ O T ′ T = ∠ O T T ′ \angle OT'T=\angle OTT' ∠OT′T=∠OTT′. 进而 B X S D BXSD BXSD 是等腰梯形, B B B, D D D, S S S, X X X 共圆. 倒角可知, ∠ L K C = ∠ L S D = π / 2 − ∠ B A C + ∠ A B C \angle LKC=\angle LSD=\pi/2-\angle BAC+\angle ABC ∠LKC=∠LSD=π/2−∠BAC+∠ABC, 因此 S S S 在 ( D L K ) (DLK) (DLK) 上, 因此 B B B, L L L, K K K, D D D, S S S, X X X 共圆. 同理, 也在 ( C L Y ) (CLY) (CLY) 上, 证毕.