在锐角 △ A B C \triangle ABC △ABC 中, A B < A C AB < AC AB<AC, Ω \Omega Ω 是外接圆, S S S 是弧 B A C BAC BAC 的中点. 过 A A A 作 B C BC BC 的垂线交 B S BS BS 于点 D D D, 交 Ω \Omega Ω 于点 E E E. 过 D D D 作 B C BC BC 的平行线交直线 B E BE BE 于点 L L L, 设 △ B D L \triangle BDL △BDL 的 外接圆 ω \omega ω 与 Ω \Omega Ω 交于另一点 F F F. 求证: ω \omega ω 在 P P P 处的切线与直线 B S BS BS 的交点在 ∠ B A C \angle BAC ∠BAC 的平分线上.
证明:
∠ D P B = ∠ D L B = ∠ E B C = ∠ E A C = π 2 − C \angle DPB = \angle DLB = \angle EBC = \angle EAC = \frac{\pi}{2} - C ∠DPB=∠DLB=∠EBC=∠EAC=2π−C
∴ A P ⊥ P D \therefore AP \perp PD ∴AP⊥PD. 设 ( ∠ B A C \angle BAC ∠BAC 的平分线交 B S BS BS 于点 Q Q Q).
设以 Q Q Q 为圆心, A Q AQ AQ 为半径的圆交 ( A B C ) (ABC) (ABC) 于 P ′ P' P′.
倒角可知, ∠ A D Q = ∠ O A Q = ∠ A B S = ∣ B 2 − C 2 ∣ \angle ADQ = \angle OAQ = \angle ABS = |\frac{B}{2}-\frac{C}{2}| ∠ADQ=∠OAQ=∠ABS=∣2B−2C∣
∴ △ A Q D ∼ △ B Q A \therefore \triangle AQD \sim \triangle BQA ∴△AQD∼△BQA, A Q 2 = ( A P ′ ) 2 = Q D ⋅ Q B AQ^2 = (AP')^2 = QD \cdot QB AQ2=(AP′)2=QD⋅QB
进而 △ D Q P ′ ∼ △ P Q B \triangle DQP' \sim \triangle PQB △DQP′∼△PQB, ∠ D P ′ Q = ∠ P B S \angle DP'Q = \angle PBS ∠DP′Q=∠PBS
设弧 B P ′ BP' BP′所对的圆周角为 x x x.
∠ D P ′ Q = π 2 − A 2 − x \angle DP'Q = \frac{\pi}{2} - \frac{A}{2} - x ∠DP′Q=2π−2A−x
显然, O Q ⊥ A P ′ OQ \perp AP' OQ⊥AP′, 且 ∠ Q P ′ O = ∠ Q A O = ∣ B 2 − C 2 ∣ \angle QP'O = \angle QAO = |\frac{B}{2} - \frac{C}{2}| ∠QP′O=∠QAO=∣2B−2C∣
不妨设 ∠ B > ∠ C \angle B > \angle C ∠B>∠C
则易知 ∠ D P ′ O = ∠ D P ′ Q − ∠ Q P ′ O = C − x = ∠ P O Q \angle DP'O = \angle DP'Q - \angle QP'O = C - x = \angle POQ ∠DP′O=∠DP′Q−∠QP′O=C−x=∠POQ.
∴ O P \therefore OP ∴OP 平行于 D P ′ DP' DP′. D P ′ ⊥ A P ′ DP' \perp AP' DP′⊥AP′. 进而 P P P 和 P ′ P' P′ 同为以 A D AD AD 为直径的圆与 ( A B C ) (ABC) (ABC) 的交点, 因此重合.
∵ Q P 2 = Q D ⋅ Q B \because QP^2 = QD \cdot QB ∵QP2=QD⋅QB.
∴ Q P \therefore QP ∴QP 与 ( D L B ) (DLB) (DLB) 相切.