2023年IMO几何预选题第4题

在锐角 △ A B C \triangle ABC ABC 中, A B < A C AB < AC AB<AC, Ω \Omega Ω 是外接圆, S S S 是弧 B A C BAC BAC 的中点. 过 A A A B C BC BC 的垂线交 B S BS BS 于点 D D D, 交 Ω \Omega Ω 于点 E E E. 过 D D D B C BC BC 的平行线交直线 B E BE BE 于点 L L L, 设 △ B D L \triangle BDL BDL 的 外接圆 ω \omega ω Ω \Omega Ω 交于另一点 F F F. 求证: ω \omega ω P P P 处的切线与直线 B S BS BS 的交点在 ∠ B A C \angle BAC BAC 的平分线上.

在这里插入图片描述

证明:

在这里插入图片描述

∠ D P B = ∠ D L B = ∠ E B C = ∠ E A C = π 2 − C \angle DPB = \angle DLB = \angle EBC = \angle EAC = \frac{\pi}{2} - C DPB=DLB=EBC=EAC=2πC

∴ A P ⊥ P D \therefore AP \perp PD APPD. 设 ( ∠ B A C \angle BAC BAC 的平分线交 B S BS BS 于点 Q Q Q).

设以 Q Q Q 为圆心, A Q AQ AQ 为半径的圆交 ( A B C ) (ABC) (ABC) P ′ P' P.

倒角可知, ∠ A D Q = ∠ O A Q = ∠ A B S = ∣ B 2 − C 2 ∣ \angle ADQ = \angle OAQ = \angle ABS = |\frac{B}{2}-\frac{C}{2}| ADQ=OAQ=ABS=2B2C

∴ △ A Q D ∼ △ B Q A \therefore \triangle AQD \sim \triangle BQA AQDBQA, A Q 2 = ( A P ′ ) 2 = Q D ⋅ Q B AQ^2 = (AP')^2 = QD \cdot QB AQ2=(AP)2=QDQB

进而 △ D Q P ′ ∼ △ P Q B \triangle DQP' \sim \triangle PQB DQPPQB, ∠ D P ′ Q = ∠ P B S \angle DP'Q = \angle PBS DPQ=PBS

设弧 B P ′ BP' BP所对的圆周角为 x x x.

∠ D P ′ Q = π 2 − A 2 − x \angle DP'Q = \frac{\pi}{2} - \frac{A}{2} - x DPQ=2π2Ax

显然, O Q ⊥ A P ′ OQ \perp AP' OQAP, 且 ∠ Q P ′ O = ∠ Q A O = ∣ B 2 − C 2 ∣ \angle QP'O = \angle QAO = |\frac{B}{2} - \frac{C}{2}| QPO=QAO=2B2C

不妨设 ∠ B > ∠ C \angle B > \angle C B>C

则易知 ∠ D P ′ O = ∠ D P ′ Q − ∠ Q P ′ O = C − x = ∠ P O Q \angle DP'O = \angle DP'Q - \angle QP'O = C - x = \angle POQ DPO=DPQQPO=Cx=POQ.

∴ O P \therefore OP OP 平行于 D P ′ DP' DP. D P ′ ⊥ A P ′ DP' \perp AP' DPAP. 进而 P P P P ′ P' P 同为以 A D AD AD 为直径的圆与 ( A B C ) (ABC) (ABC) 的交点, 因此重合.

∵ Q P 2 = Q D ⋅ Q B \because QP^2 = QD \cdot QB QP2=QDQB.

∴ Q P \therefore QP QP ( D L B ) (DLB) (DLB) 相切.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值