并查集浅析(poj 1308)

本文提供了一段用于解决POJ1308问题的C语言代码实现,该问题要求判断一系列边是否能构成一棵树。文章通过并查集数据结构实现了对树的条件检查,包括确保只有一个根节点且非根节点的入度为1。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载一篇讲解,讲的非常透彻:http://blog.csdn.net/pure_life/article/details/2922118

POJ 1308

形成树的条件:(1) 只有一个根 (2) 非根节点入度只能为1

#include <stdio.h>
#include <memory.h>

const int MAX_SIZE = 105;
int parent[MAX_SIZE];
bool flag[MAX_SIZE];

void make_set(){  //初始化
	for(int x = 1; x < MAX_SIZE; x ++){
		parent[x] = x;
		flag[x] = false;
	}
}

int find_set(int x){   //寻找根节点,带路径压缩
	if(x != parent[x])
		parent[x] = find_set(parent[x]);
	return parent[x];
}

void union_set(int x, int y){  //合并
	x = find_set(x);
	y = find_set(y);
	if(x == y) return;
	parent[y] = x;
}

bool single_root(int n){   //判断是不是只有一个根,条件(1)
	int i = 1;
	while (i <= n && !flag[i]){
		++i;
	}
	int root = find_set(i);
	while (i <= n){
		if (flag[i] && find_set(i) != root){
			return false;
		}
		++i;
	}
	return true;
}

int main(){
	int x, y;
	bool is_tree = true;
	int range = 0;
	int idx = 1;
	make_set();
	while (scanf("%d %d", &x, &y) != EOF){
		if (x < 0 || y < 0){
			break;
		}

		if (x == 0 || y == 0){
			if (is_tree && single_root(range)){
				printf("Case %d is a tree.\n", idx++);
			}
			else{
				printf("Case %d is not a tree.\n", idx++);
			}
			is_tree = true;
			range = 0;
			make_set();
			continue;
		}

		if (!is_tree){
			continue;
		}
		range = x > range ? x : range;
		range = y > range ? y : range;

		flag[x] = flag[y] = true;
		if (find_set(x) == find_set(y)){  //如果两者属于一个集合(也就是有共同祖先),并且两者还有父子关系,那么无法形成树,条件2
			is_tree = false;
		}
		union_set(x, y);
	}
	return 0;
}</span>


为了有效地应用Transformer Block和频域特征学习在文档图像恢复项目中,推荐深入阅读《深度学习模糊文档图像恢复新方法:变换器模块和频域学习优化》一书。该书详细介绍了如何将深度学习技术,特别是Transformer Block和频域特征学习技术,应用于图像质量提升的最新研究和实践案例。 参考资源链接:[深度学习模糊文档图像恢复新方法:变换器模块和频域学习优化](https://wenku.csdn.net/doc/886jyyxoo2?spm=1055.2569.3001.10343) Transformer Block在图像恢复任务中通过其强大的全局依赖捕捉能力,能够更有效地处理图像的长距离依赖问题,这对于图像质量的提升至关重要。Transformer Block的核心是自注意力机制,它能够将图像中的每个位置与其它所有位置关联起来,从而捕捉到更丰富的图像特征。 频域特征学习是指在图像的频率表示中进行特征提取和处理。它与传统的空间域特征学习不同,通过观察图像在频率上的分布,可以捕捉到更多关于图像结构和纹理的细节信息。在频域中使用快速傅里叶变换(FFT)可以将图像从空间域转换到频域,从而利用频域中的信息进行图像恢复。 结合Transformer Block和频域特征学习,可以通过在Transformer结构中嵌入频域特征提取的模块,如Res FFT-conv Block,来进一步提升网络的性能。这样的网络架构能够同时利用Transformer Block的全局上下文信息捕捉能力和频域特征学习对细节的敏感性,从而在文档图像恢复中取得更好的效果。 在实际操作中,可以使用PaddlePaddle框架实现这些技术。以下是一个简单的代码示例,展示如何在PaddlePaddle中结合Transformer Block和频域特征学习模块: ```python import paddle import paddle.nn as nn class FFTConv(nn.Layer): def __init__(self): super(FFTConv, self).__init__() # 定义FFT模块 self.fft = nn.FFT() # 定义卷积模块 self.conv = nn.Conv2D(...) def forward(self, x): # 将输入转换到频域 x_fft = self.fft(x) # 在频域中进行特征学习 x_fft = self.conv(x_fft) # 将频域特征转换回空间域 x = self.fft.ifft(x_fft) return x class TransformerBlock(nn.Layer): def __init__(self): super(TransformerBlock, self).__init__() # 定义自注意力机制 self.self_attention = nn.MultiHeadAttention(...) # 定义FFT特征学习模块 self.fft_conv = FFTConv(...) def forward(self, x): # 自注意力机制处理 x = self.self_attention(x, x, x) # 结合FFT特征学习模块 x = self.fft_conv(x) return x # 实例化Transformer Block并应用于输入图像 transformer = TransformerBlock() output_image = transformer(input_image) ``` 在这个示例中,我们首先定义了一个FFTConv类,它包含了FFT模块和卷积模块,用于在频域中进行特征学习。然后定义了TransformerBlock类,它结合了自注意力机制和FFT特征学习模块。最后实例化了TransformerBlock,并将其应用于输入图像,以恢复文档图像的质量。 通过学习和应用这些高级技术,您将能够显著提高文档图像的恢复效果。如果您希望继续深入了解这些方法和技巧,建议阅读《深度学习模糊文档图像恢复新方法:变换器模块和频域学习优化》一书,它将为您提供一个全面的知识体系和实用的解决方案。 参考资源链接:[深度学习模糊文档图像恢复新方法:变换器模块和频域学习优化](https://wenku.csdn.net/doc/886jyyxoo2?spm=1055.2569.3001.10343)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值