OpenAI GPT o1技术报告阅读(3)-英文阅读及理解

✨继续阅读报告:使用大模型来学习推理(Reason)

原文链接:https://openai.com/index/learning-to-reason-with-llms/

这次我们继续看一个英文阅读理解的案例。

原问题:

The following passage is the draft of an excerpt from a contemporary book about maintaining health.

(1) Curiously, there is good evidence that for many people, an increase in body weight might not require an increase in calorie consumption at all.
(2) In most scientific studies it is difficult to determine how much people are eating, because appetite regulation is a field of staggering complexity.
(3) (Have you ever had to tell your doctor whether you drink beer or binge out on chips or ice cream?)
(4) But in certain controlled environments, where sneaking in an unreported chocolate bar is unlikely, interesting insights can be gained.
(5) U.S. prisons have long been fertile ground for nutrition research, with a number of prisoner-feeding experiments being conducted over the years.
(6) Overfeeding studies in the twentieth century by the researcher Erich Sims showed that subjects gain different amounts of weight despite eating identical amounts of food, indicating that the “calories-expended” side of the equation varies considerably between individuals, independent of exercise or other physical activity.
(7) It also showed different amounts of resistance to weight gain, as subjects’ metabolic rates seemed to increase on overeating, their bodies trying hard not to lay down too much of their excessive food intake as fat.
(8) The extent to which this happened varied significantly among individuals, despite the similarity of their diet and environment.
(9) These results are only curious if we assume that everyone reacts to food in exactly the same way.
(10) Experience tells us, however, that it is a bit more complicated than that.
(11) Everybody processes their food differently.
(12) You might burn calories faster.
(13) Another person stores more calories.
(14) What is eaten also matters since reaction varies based on nutritional intake.
(15) That applies even when people appear in terms of their age, height, and weight dimensions are equivalent.
(16) A diverse population would have a number of evolutionary advantages, with some individuals prioritizing the effective storage of fat in order to survive and others burning most of their energy exploring.
(17) It would also make sense for us to be able to switch between those two states when we needed to.
(18) But how is it that the amount of weight gained from identical food intake can vary among individuals?
(19) Even thou

### 比较OpenAI GPT-4与GPT-4o模型 #### 特征差异 GPT-4代表了OpenAI在大型语言模型技术上的最新进展,具有更高的参数量和改进的架构设计,旨在提供更为流畅自然的语言理解和生成能力。相比之下,关于GPT-4o的信息较少,通常认为这是针对特定优化版本或是内部使用的变体之一[^1]。 #### 性能对比 具体到性能方面,在公开资料中并没有直接提及GPT-4o的具体评测数据。然而,基于一般模式,可以推测GPT-4o可能是在原有基础上做了针对性调整或优化,比如提升了某些应用场景下的效率或者降低了资源消耗等特性。而标准版GPT-4则经过大规模预训练并广泛应用于多种任务场景,其泛化能力和适应范围更加广阔。 #### 应用领域 由于缺乏详细的官方说明文档来描述两者之间的区别,对于想要深入了解两者的不同之处以及各自适用场景的人来说存在一定难度。但从逻辑推断来看,如果存在所谓的"GPT-4o"版本,则很可能是为了满足特殊需求而定制开发出来的分支版本;它或许会在特定行业应用中有更好的表现,或者是专门为某类计算环境进行了适配性改造。 ```python # 这里仅展示如何通过Python代码加载两个假设存在的模型进行简单推理演示, # 实际操作需依据实际可用API接口编写相应程序。 import transformers as trf model_name_4 = "openai/gpt-4" tokenizer_4 = trf.AutoTokenizer.from_pretrained(model_name_4) model_4 = trf.AutoModelForCausalLM.from_pretrained(model_name_4) # 假设GPT-4o也存在于Hugging Face Model Hub中 model_name_4o = "openai/gpt-4o" tokenizer_4o = trf.AutoTokenizer.from_pretrained(model_name_4o) model_4o = trf.AutoModelForCausalLM.from_pretrained(model_name_4o) text_input = ["Tell me about the weather today."] input_ids_4 = tokenizer_4(text_input, return_tensors="pt").input_ids output_4 = model_4.generate(input_ids_4) input_ids_4o = tokenizer_4o(text_input, return_tensors="pt").input_ids output_4o = model_4o.generate(input_ids_4o) print(f'Output from GPT-4:\n{tokenizer_4.decode(output_4[0], skip_special_tokens=True)}') print(f'\nOutput from GPT-4o:\n{tokenizer_4o.decode(output_4o[0], skip_special_tokens=True)}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

聚梦小课堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值