前言:计算机无法直接处理一个单词或者一个汉字,需要把一个token转化成计算机可以识别的向量,这也就是Embedding过程。
一、什么是Embedding?
🚩拓展了解整数编码和独热编码(one-hot)
Embedding 是一种将高维数据(如文本或图像)转换为较低维度的向量表示的技术。这种表示捕捉了数据的关键特征,使得在处理、分析和机器学习任务中更加高效。通常用于将离散的、非连续的数据转换为连续的向量表示,以便于计算机进行处理。
“Embedding”直译是嵌入式、嵌入层。通俗讲,我们常见的地图就是对于现实地理的Embedding,现实的地理地形的信息其实远远超过三维,但是地图通过颜色和等高线等来最大化表现现实的地理信息。
-
Embedding 技术将原始数据从高维度空间映射到低维度空间,有助于减少数据的复杂性和计算资源的需求,并提高模型的训练和推理效率;
-
Embedding 向量是连续的,因此可以在数学上进行操作,如向量加法、减法和点积等。这使得模型能够更好地理解数据之间的关系;
-
Embedding 技术通常会捕获数据的语义信息。在 NL