快速了解!AI领域最全的大模型术语!!!

本文概述了Transformer模型的发展,从最初的GPT系列到BERT、RoBERTa和T5等,强调了大模型如GPT-3、InstrucGPT和ChatGPT在自然语言处理中的重要角色。文章讨论了预训练、微调技术,如自监督学习、微调和强化学习,以及关键概念如Embedding、AIGC、AGI和AI对齐。此外,文中提到了CLIP、StableDiffusion等多模态算法在生成AI中的应用和挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、模型

  • Transformer:Transformer 是一种基于自注意力机制(self-attention mechanism)的深度学习模型,最初是为了处理序列到序列(sequence-to-sequence)的任务,比如机器翻译。后续这些模型都是基于Transformer 开发的。

  • GPT(GPT-3、GPT-3.5、GPT-4):全称为Generative Pre-training Transformer,是OpenAI开发的一种基于Transformer的大规模自然语言生成模型。GPT模型采用了自监督学习的方式,首先在大量的无标签文本数据上进行预训练,然后在特定任务的数据上进行微调。

  • BERT:由Google开发的一种预训练语言模型,它在自然语言处理领域取得了很大的成功。BERT有340M和1.1B两个版本,其中1.1B版本有33亿个参数。

  • RoBERTa:Facebook AI Research开发的一种预训练语言模型,它在自然语言处理领域取得了很大的成功。RoBERTa有125M、250M、500M、1.5B和2.7B五个版本,其中2.7B版本有27亿个参数。

  • T5:由Google开发的一种预训练语言模型,它在自然语言处理领域取得了很大的成功。T5有11B和22B

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朱晓霞AI

您的鼓励是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值