YOLO目标检测标签的格式解析

本文介绍了YOLO对象检测算法的标签格式,包括中心坐标和尺寸的归一化处理。同时,详细阐述了如何将VOC格式的数据转换为YOLO格式,以及反向操作,即YOLO到VOC的转换过程。这些转换函数对于在不同标注格式间进行数据交换具有实用价值。
摘要由CSDN通过智能技术生成

一、YOLO标签的格式

<object-class> <x> <y> <width> <height>

具体的例子如下:

0 0.412500 0.318981 0.358333 0.636111

x,y是目标的中心坐标,width,height是目标的宽和高。这些坐标是通过归一化的,其中x,width是使用原图的width进行归一化;而y,height是使用原图的height进行归一化。

二、VOC与YOLO之间的格式转换

# size是原图的(w,h)
# box是坐标
def voc_to_yolo(size, box):
    dw = 1./size[0]
    dh = 1./size[1]
    x = (box[0] + box[1])/2.0
    y = (box[2] + box[3])/2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

def yolo_to_voc(size, box):
    x = box[0] * size[0]
    w = box[2] * size[0]
    y = box[1] * size[1]
    h = box[3] * size[1]
    xmin = int(x - w/2)
    xmax = int(x + w/2)
    ymin = int(y - h/2)
    ymax = int(y + h/2)
    return (xmin, ymin, xmax, ymax)

 

参考:

YOLO: Real-Time Object Detection (pjreddie.com)

YOLO是一种用于目标检测的算法,而VOC2012是一个用于目标检测的数据集。VOC2012数据集包含了20个不同类别的物体,如人、车、飞机、动物等。我们可以使用YOLO算法来在图像中实现目标检测,即检测图像中是否存在这些物体,并对它们进行定位和分类。 YOLO目标检测算法采用的是单阶段检测方法,即在一个单一的网络中同时进行物体的检测和分类。这个网络主要由卷积层和全连接层组成,其中卷积层负责提取图像的特征,而全连接层则用于预测物体的类别和位置。 YOLO通过将图像分为多个网格单元,对每个单元进行预测来实现目标检测。对于每个网格单元,YOLO会预测出多个边界框,每个边界框包含了一个物体的位置和类别信息。同时,YOLO还使用了锚框来提高边界框的预测精度。 YOLO的优点是速度快,因为它一次 forward pass 就可以得到所有边界框的预测结果。此外,YOLO在准确度上也取得了较好的表现,它能够克服物体尺寸变化、重叠以及不同类别的物体同时出现的问题。 在使用YOLO目标检测算法进行VOC2012数据集的实验时,我们需要先训练一个YOLO模型,使用VOC2012数据集进行训练。训练过程中,我们采用交叉熵损失函数来度量模型的预测结果与真实标签之间的差距,并使用梯度下降法来进行参数的优化。 训练完成后,我们可以使用YOLO模型对新的图像进行目标检测。对于每个图像,我们将其输入到YOLO模型中,模型会给出每个边界框的概率和位置预测,我们可以根据阈值来筛选出最终的目标物体,并进行进一步的分析和处理。 总而言之,YOLO目标检测算法在VOC2012数据集上的应用可以帮助我们快速准确地检测和定位图像中的不同类别的物体,具有广泛的应用前景。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值