目录
本篇博文常见的不等式进行总结说明,其中包括马尔科夫不等式、切比雪夫不等式、詹森不等式、李雅普诺夫不等式、霍尔德不等式、柯西不等式、闵可夫斯基不等式等。
1.Markov’s Inequality
马尔科夫不等式把概率和数学期望联系到一起,给出了随机变量大于某整数的概率上界。
2.Chebyshev’s Inequality
Let
ξ
\xi
ξ be a random variable, and mean value be
μ
\mu
μ, variance be
σ
2
\sigma^2
σ2. Then for any
ε
>
0
\varepsilon>0
ε>0
P
(
∣
ξ
−
μ
∣
≥
ε
)
≤
σ
2
/
ε
2
P(|\xi-\mu|\geq \varepsilon)\leq \sigma^2/\varepsilon^2
P(∣ξ−μ∣≥ε)≤σ2/ε2.
切比雪夫不等式是对一个(不知分布的)随机变量在一个范围内的概率进行估计,有意思的,切比雪夫是如上不等式发现者马尔科夫的老师。
3.Jensen’s Inequality
这是概率形式的詹森不等式。对于离散情形,只需求期望的操作变为求和操作。
4.Lyapunov’s Inequality
李雅普诺夫不等式反映了不同阶(绝对值)矩之间的不等式关系。
5.Holder’s Inequality
离散情形下,随机变量变为离散变量,期望(即,积分)变为求和。
6.Cauchy’s Inequality
如上为期望形势的柯西-施瓦茨不等式。矩阵形式的柯西-施瓦茨不等式为:
x
T
y
≤
∣
∣
x
∣
∣
.
∣
∣
y
∣
∣
x^Ty\leq||x||.||y||
xTy≤∣∣x∣∣.∣∣y∣∣.
7.Minkowsaki’s Inequality
离散形式的闵可夫斯不等式也即把随机变量改写为离散变量,积分改写为求和.
8. C r C_r Cr Inequality
C
r
C_r
Cr不等式说明统计意义上的估计,无法精确地得到真值.