常用不等式总结说明

本篇博文常见的不等式进行总结说明,其中包括马尔科夫不等式、切比雪夫不等式、詹森不等式、李雅普诺夫不等式、霍尔德不等式、柯西不等式、闵可夫斯基不等式等。


1.Markov’s Inequality

在这里插入图片描述
马尔科夫不等式把概率和数学期望联系到一起,给出了随机变量大于某整数的概率上界。


2.Chebyshev’s Inequality

Let ξ \xi ξ be a random variable, and mean value be μ \mu μ, variance be σ 2 \sigma^2 σ2. Then for any ε > 0 \varepsilon>0 ε>0
P ( ∣ ξ − μ ∣ ≥ ε ) ≤ σ 2 / ε 2 P(|\xi-\mu|\geq \varepsilon)\leq \sigma^2/\varepsilon^2 P(ξμε)σ2/ε2.

切比雪夫不等式是对一个(不知分布的)随机变量在一个范围内的概率进行估计,有意思的,切比雪夫是如上不等式发现者马尔科夫的老师。


3.Jensen’s Inequality

在这里插入图片描述
这是概率形式的詹森不等式。对于离散情形,只需求期望的操作变为求和操作。

4.Lyapunov’s Inequality

在这里插入图片描述
李雅普诺夫不等式反映了不同阶(绝对值)矩之间的不等式关系。

5.Holder’s Inequality

在这里插入图片描述
离散情形下,随机变量变为离散变量,期望(即,积分)变为求和。

6.Cauchy’s Inequality

在这里插入图片描述
如上为期望形势的柯西-施瓦茨不等式。矩阵形式的柯西-施瓦茨不等式为: x T y ≤ ∣ ∣ x ∣ ∣ . ∣ ∣ y ∣ ∣ x^Ty\leq||x||.||y|| xTyx.y.

7.Minkowsaki’s Inequality

在这里插入图片描述
离散形式的闵可夫斯不等式也即把随机变量改写为离散变量,积分改写为求和.

8. C r C_r Cr Inequality

在这里插入图片描述
C r C_r Cr不等式说明统计意义上的估计,无法精确地得到真值.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值