电商行业智能搜索技术原理全解析

本文详细介绍了电商搜索的业务逻辑,强调了召回和排序的重要性。自然语言处理(NLP)在搜索中的应用,如阿里云达摩院的NLP搜索分析路径。电商搜索具有关键词堆砌、词序不敏感等特点,需要优化分词、实体识别、类目预测和排序算法。开放搜索提供了电商行业模板,包括分词优化、实体识别、类目预测等功能,以提升业务转化。此外,还讨论了搜索引导功能,如热搜底纹和下拉提示,以及开放搜索的架构和优势。
摘要由CSDN通过智能技术生成

简介: 对于电商平台来说,智能搜索功能是至关重要的。本文剖析电商行业的搜索专属特点和业务需求,并介绍开放搜索提供的【电商行业模板】智能搜索能力,希望带给企业更多提升业务转化的思路和解决方案~

一、搜索的业务逻辑

“搜索Query→召回→排序→搜索结果”
当用户在搜索框输入一个Query时,系统通过对其语义的理解,召回相关文档或商品,在通过算法排序,按客户实际的搜索意图进行前后排序,最终解决其搜索需求,实现业务转化。
其中【召回】与【排序】对搜索引导的业务目标最为重要。

二、自然语言处理技术(NLP)在搜索上的应用

1. 概念介绍
想实现搜索引擎效果的优化,就一定要对自然语言处理技术有一定的了解,因为用户输入一个Query,从学术角度解读,自然语言智能研究实现了人与计算机之间用语言进行有效通信,它是融合语言学、心理学、计算机科学、数学、统计学于一体的科学。
自然语言处理被学者誉为”人工智能皇冠上的明珠“,研究覆盖了感知智能、认知智能、创造智能这样的学科,是实现完整人工智能的必要技术。
2. 阿里云达摩院NLP搜索分析路径
在这里插入图片描述

三、电商搜索的特点

1. 关键词堆砌
例如:杨幂同款夏季连衣裙包邮。
2. 词序对语义影响不大
例如:杨幂同款女夏季连衣裙包邮;女夏季连衣裙包邮杨幂同款。
3. 类目预测问题
例如:当用户查询“苹果”时,可能查询的是水果,也可能是手机品牌。
4.查询召回文档相关性差
核心词识别不准确,分词不准确
5. 搜索引导的业务转化比重较大
据统计,综合类电商搜索引导转化占比40%以上,垂直类电商搜索引导转化占比60%以上。
6. 稳定性要求较高,支持弹性扩容
活动、大促系统QPS可能是平时的百倍千倍,需要平滑的扩缩容,保障系统的稳定。

四、电商搜索优化核心功能

1. 分词(划重点!)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值