💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于鲸鱼优化算法(WOA)优化CNN-BiGRU-Attention风电功率预测的研究是一个结合了优化算法、深度学习技术和风电功率预测领域的综合课题。虽然参考文章中并未直接提及CNN-BiGRU-Attention这一具体组合,但我们可以根据CNN、LSTM(长短期记忆网络,此处可类比为BiGRU,即双向门控循环单元)以及Attention机制在风电功率预测中的应用,以及鲸鱼优化算法(WOA)的优化能力,来构建这一研究的框架。
一、研究背景与意义
风能作为一种清洁、可再生的能源,在全球能源结构中占据重要地位。然而,风电功率的随机性和波动性给电力系统的稳定运行带来了挑战。准确的风电功率预测对于提高电网的安全性、稳定性和经济性具有重要意义。因此,研究基于鲸鱼优化算法优化CNN-BiGRU-Attention模型的风电功率预测方法具有重要的理论价值和实际应用前景。
二、算法介绍
1. 鲸鱼优化算法(WOA)
鲸鱼优化算法是一种模拟鲸鱼捕食行为的群体智能优化算法,由澳大利亚格里菲斯大学的Mirjalili等于2016年提出。WOA通过模拟鲸鱼的包围猎物、螺旋攻击猎物和随机搜索猎物等行为,实现对全局最优解的搜索。该算法具有收敛速度快、全局搜索能力强、算法简单易实现等优点。
2. CNN(卷积神经网络)
CNN是一种前馈神经网络,特别适合于处理具有空间结构的数据。在风电功率预测中,CNN可以提取风速等时间序列数据的局部特征,为后续的预测提供重要信息。
3. BiGRU(双向门控循环单元)
BiGRU是RNN的一种变体,能够同时处理输入序列的正向和反向信息,从而捕捉到序列中的双向依赖关系。在风电功率预测中,BiGRU能够学习风速等时间序列数据中的长期依赖关系,提高预测的准确性。
4. Attention机制
Attention机制能够识别不同时间步长特征的权重,突出重要的特征信息。在风电功率预测中,Attention机制可以帮助模型识别影响预测结果的关键时间段,进一步提高预测的精度。
三、模型构建与优化
1. 模型结构
基于WOA优化CNN-BiGRU-Attention的风电功率预测模型主要包含以下几个部分:
- 输入层:输入风速等时间序列数据,并进行预处理。
- CNN层:利用CNN提取时间序列数据的局部特征。
- BiGRU层:利用BiGRU学习时间序列数据的双向长时依赖关系。
- Attention层:利用Attention机制识别不同时间步长特征的权重。
- 输出层:输出预测的风电功率值。
2. 模型优化
WOA算法被用于优化CNN-BiGRU-Attention模型的参数,以提高模型的预测精度。具体步骤包括:
- 初始化鲸鱼群体,即随机生成一组鲸鱼的位置和速度作为算法的初始状态。
- 根据评价函数(如预测误差)计算鲸鱼群体的适应度值。
- 通过WOA的搜索、包围和捕食行为来更新候选解,即模型参数。
- 重复上述步骤,直到满足停止条件(如达到最大迭代次数或预测误差小于预设阈值)。
四、实验结果与分析
虽然无法直接给出具体的实验结果,但基于WOA优化CNN-BiGRU-Attention模型的风电功率预测方法通常会在预测精度、稳定性等方面表现出优于传统方法的性能。这主要得益于WOA的全局搜索能力和CNN-BiGRU-Attention模型的深度学习特性。
五、结论与展望
综上所述,基于鲸鱼优化算法优化CNN-BiGRU-Attention模型的风电功率预测方法是一种有效且具有潜力的预测方法。未来研究可以进一步探索模型的泛化能力和鲁棒性,以及将该模型应用于其他可再生能源预测领域的可能性。同时,也可以考虑将其他优化算法与深度学习模型相结合,以进一步提高预测精度和效率。
📚2 运行结果
部分代码:
% 指标计算
disp('…………训练集误差指标…………')
[mae1,rmse1,mape1,error1]=calc_error(T_train1,T_sim1);
fprintf('\n')
figure('Position',[200,300,600,200])
plot(T_train1);
hold on
plot(T_sim1)
legend('真实值','预测值')
title('CNN-BiGRU-ATTENTION训练集预测效果对比')
xlabel('样本点')
ylabel('发电功率')
disp('…………测试集误差指标…………')
[mae2,rmse2,mape2,error2]=calc_error(T_test2,T_sim2);
fprintf('\n')
figure('Position',[200,300,600,200])
plot(T_test2);
hold on
plot(T_sim2)
legend('真实值','预测值')
title('CNN-BiGRU-ATTENTION预测集预测效果对比')
xlabel('样本点')
ylabel('发电功率')
figure('Position',[200,300,600,200])
plot(T_sim2-T_test2)
title('CNN-BiGRU-ATTENTION误差曲线图')
xlabel('样本点')
ylabel('发电功率')
%% 优化CNN-BiGRU-Attention
disp(' ')
disp('优化CNN_BiLSTM_attention神经网络:')
%% 初始化参数
popsize=10; %初始种群规模
maxgen=8; %最大进化代数
fobj = @(x)objectiveFunction(x,numFeatures,outdim,vp_train,vt_train,vp_test,T_test,ps_output);
% 优化参数设置
lb = [0.001 10 2 2]; %参数的下限。分别是学习率,biGRU的神经元个数,注意力机制的键值, 卷积核大小
ub = [0.01 50 50 10]; %参数的上限
dim = length(lb);%数量
% 可选:'DBO','GWO','OOA','PSO','SABO','SCSO','SSA','BWO','RIME','WOA','HHO','NGO';
[Best_score,Best_pos,curve]=NGO(popsize,maxgen,lb,ub,dim,fobj); %修改这里的函数名字即可
setdemorandstream(pi);
%% 绘制进化曲线
figure
plot(curve,'r-','linewidth',2)
xlabel('进化代数')
ylabel('均方误差')
legend('最佳适应度')
title('进化曲线')
%% 把最佳参数Best_pos回带
[~,optimize_T_sim] = objectiveFunction(Best_pos,numFeatures,outdim,vp_train,vt_train,vp_test,T_test,ps_output);
setdemorandstream(pi);
%% 比较算法预测值
str={'真实值','CNN-BiGRU-Attention','优化后CNN-BiGRU-Attention'};
figure('Units', 'pixels', ...
'Position', [300 300 860 370]);
plot(T_test,'-','Color',[0.8500 0.3250 0.0980])
hold on
plot(T_sim2,'-.','Color',[0.4940 0.1840 0.5560])
hold on
plot(optimize_T_sim,'-','Color',[0.4660 0.6740 0.1880])
legend(str)
set (gca,"FontSize",12,'LineWidth',1.2)
box off
legend Box off
%% 比较算法误差
test_y = T_test;
Test_all = [];
y_test_predict = T_sim2;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];
y_test_predict = optimize_T_sim;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];
str={'真实值','CNN-BiGRU-Attention','优化后CNN-BiGRU-Attention'};
str1=str(2:end);
str2={'MAE','MAPE','MSE','RMSE','R2'};
data_out=array2table(Test_all);
data_out.Properties.VariableNames=str2;
data_out.Properties.RowNames=str1;
disp(data_out)
%% 柱状图 MAE MAPE RMSE 柱状图适合量纲差别不大的
color= [0.66669 0.1206 0.108
0.1339 0.7882 0.8588
0.1525 0.6645 0.1290
0.8549 0.9373 0.8275
0.1551 0.2176 0.8627
0.7843 0.1412 0.1373
0.2000 0.9213 0.8176
0.5569 0.8118 0.7882
1.0000 0.5333 0.5176];
figure('Units', 'pixels', ...
'Position', [300 300 660 375]);
plot_data_t=Test_all(:,[1,2,4])';
b=bar(plot_data_t,0.8);
hold on
for i = 1 : size(plot_data_t,2)
x_data(:, i) = b(i).XEndPoints';
end
for i =1:size(plot_data_t,2)
b(i).FaceColor = color(i,:);
b(i).EdgeColor=[0.3353 0.3314 0.6431];
b(i).LineWidth=1.2;
end
for i = 1 : size(plot_data_t,1)-1
xilnk=(x_data(i, end)+ x_data(i+1, 1))/2;
b1=xline(xilnk,'--','LineWidth',1.2);
hold on
end
ax=gca;
legend(b,str1,'Location','best')
ax.XTickLabels ={'MAE', 'MAPE', 'RMSE'};
set(gca,"FontSize",10,"LineWidth",1)
box off
legend box off
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]许亮,任圆圆,李俊芳.基于NGO-CNN-BiLSTM神经网络的动态质子交换膜燃料电池剩余使用寿命预测[J].汽车工程师, 2024(003):000.
[2]李卓,叶林,戴斌华,等.基于IDSCNN-AM-LSTM组合神经网络超短期风电功率预测方法[J].高电压技术, 2022(6):2117-2127.
[3]贾睿,杨国华,郑豪丰,等.基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J].中国电力, 2022, 55(5):47-56.DOI:10.11930/j.issn.1004-9649.202104023.
[4]李艳、彭春华、傅裕、孙惠娟.基于CNN-LSTM网络模型的风电功率短期预测研究[J].华东交通大学学报, 2020, 37(4):7.DOI:CNKI:SUN:HDJT.0.2020-04-017.
[5]张子华,李琰,徐天奇,等.基于VMD-CNN-LSTM的短期风电功率预测研究[J].云南民族大学学报:自然科学版, 2023.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取