💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
🔊博主简介:985研究生,Matlab领域科研开发者;
🚅座右铭:行百里者,半于九十。
🏆代码获取方式:
CSDN Matlab武动乾坤—代码获取方式
更多Matlab路径规划仿真内容点击👇
①Matlab路径规划(进阶版)
⛳️关注CSDN Matlab武动乾坤,更多资源等你来!!
⛄一、麻雀算法求解无人机三维路径规划简介
1 引言
随着无人机(Unmanned Aerial Vehicle,UAV)技术的不断发展,国内外学者对于无人机作战应用的研究日益增多。无人机航迹规划是任务规划系统的关键部分,是一个典型的非确定性多项式(Nondeterministic Polynomial,NP)问题。随着规划问题复杂度的不断增加,其难度和计算量迅速增长,很难找到一种有效应对所有复杂环境的航迹规划方法。为解决不同条件下的航迹规划问题,学者们不断对航迹规划算法进行研究和改进。研究了快速扩展随机树(Rapidexploration Random Tree,RRT)算法、A star算法、粒子群优化(Particle Swarm Optimization,PSO)算法、遗传算法(Genetic Algorithm,GA)在UAV航迹规划中的运用。Yang等将环境势场引入RRT算法,但得到的规划航迹与实际最短航迹有一定差距;刘华伟等将人的智能决策引入RRT算法,但是该算法依赖人的主观判断,容易陷入局部最优;赵锋等将启发式权重系数引入A star算法,但权重系数的线性调整策略不能很好地适应复杂的优化问题;Zhang等在PSO算法中设置异步变化学习因子,但搜索能力依赖于步长的分段设置;程泽新等在GA中引入差分进化策略,但改进后的算法计算量增大,航迹规划实时性较差。
自1975年美国教授Holland根据达尔文进化论以及自然界优胜劣汰机制提出了GA以后,越来越多的学者通过对不同生物种群和物理现象进行分析,从中获取灵感,提出了多种群智能优化算法,包括:灰狼优化算法(Grey Wolf Optimizier,GWO)、萤火虫算法(Firefly Algorithm,FA)、天牛须搜索(Beetle Antennae Search,BAS)算法、鲸鱼优化算法(Whale Optimization Algorithm,WOA)、天牛群优化算法(Beetle Swarm Optimization,BSO)。
麻雀搜索算法(Sparrow Search Algorithm,SSA)通过麻雀个体搜寻食物和反捕食进行迭代寻优,具有调整参数少、收敛速度快、计算简单等优点;但和其他群智能算法一样,在求解复杂工程优化问题时,容易“早熟”,导致收敛精度不高,且易于陷入局部最优解。SSA的更新方式可大致分为两种:1)向当前最优位置靠近;2)向原点靠近。通过仿真实验可知,在进行航迹模型最优航迹求解时,每次收敛是直接跳跃到当前最优解附近,容易丢失全局最优航迹解,仅可能得到满足约束的可行解,并且有概率得不到可行解。
2 麻雀搜索算法
SSA主要模拟了麻雀觅食的过程。麻雀觅食过程是发现者-跟随者模型的一种,同时还叠加了侦查预警机制。麻雀中容易找到食物的个体作为发现者,其他个体作为跟随者,同时种群中选取一定比例的个体进行侦查预警,如果发现危险则放弃食物,安全第一。由文献[13]可知,SSA是一种优于GWO、PSO、引力搜索算法(Gravity Search Algorithm,GSA)等算法的一种新的群智能优化算法。
SSA算法中有发现者、追随者以及警戒者,分别按照各自规则进行位置更新,更新规则如下:
其中:t为当前代数;Xit+1表示在t+1代第i只麻雀的适应值;itermax是最大迭代数;ξ∈(0,1)是一个随机数;R2表示警戒值;ST表示安全阈值;q是一个服从正态分布的随机数;L是一个一行多维的全一矩阵。
其中:Xp表示被发现者占据的最佳位置;Xworst表示当前最差位置;A是一个各元素为1或-1的一行多维矩阵。
其中:Xtbest是当前全局最佳位置;β是步长控制参数;K∈(0,1)是一个随机数;fi是当前麻雀的适应度,fg和fw是当前最佳适应度和最差适应度;ε是一个常数,用于避免分母为零,本文设置为10E-8。
算法实现具体如下:
步骤1初始化麻雀数量,定义相关参数;
步骤2对适应度进行排序,找到当前最佳适应度个体和最差适应度个体;
步骤3使用式(1)更新适应度靠前麻雀(发现者)位置;
步骤4使用式(2)更新适应度靠后麻雀(追随者)位置;
步骤5使用式(3)随机更新部分麻雀(警戒者)位置;
步骤6得到当前更新后的位置;
步骤7如果新位置优于旧位置,更新旧位置;
步骤8重复进行步骤3)~7);
步骤9输出最佳适应值和麻雀个体。
⛄二、部分源代码
clc;
clear;
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 汤安迪,韩统,徐登武,谢磊.基于混沌麻雀搜索算法的无人机航迹规划方法[J].计算机应用. 2021,41(07)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合