【优化求解】遗传算法结合粒子群算法求解单目标优化问题【含Matlab源码 1659期】

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、GA-PSO混合优化算法的基本思想

对于遗传算法来讲, 传统的遗传算法中变异算子是对群体中的部分个体实施随机变异, 与历史状态和当前状态无关。而粒子群算法中粒子则能保持历史状态和当前状态。遗传算法的进化初期, 变异有助于局部搜索和增加种群的多样性;在进化后期, 群体已基本趋于稳定, 变异算子反而会破坏这种稳定。变异概率过大会使遗传模式遭到破坏, 过小又会使搜索过程缓慢甚至停滞不前。本文通过在粒子群算法中引入遗传算法的交叉操作, 改进种群分割策略, 且用粒子群算法重构变异算子来进行算法的改进。本文所提的混合算法主要就是从用遗传算法来模拟粒子群算法的角度出发, 利用粒子群算法来重构遗传算法算子和进行种群分割。从宏观上来看, 其行为是粒子群算法;从微观来看, 其行为是遗传算法, 从而构成遗传-粒子群混合算法。下面主要介绍一下引入的交叉和变异算子及变异算子。

1 交叉算子
设GA-PSO混合算法总的进化代数为T, 当算法进化到第t代时, 总的种群设为∏t={x1t, …, xit, …, xnt}, (1≤i≤n) , n为种群规模, xit为单个粒子, 且对于任意i, (1≤i≤n) , 都有xit≤xjt成立, 即∏t有序。由于所讨论的混合算法的个体编码采用了实值编码, 且该算法主要针对于数值优化问题故交叉算子采用了算术交叉。
假设在两个个体xit, xjt (i≠j) 之间进行算术交叉, 则交叉运算后所产生的两个新个体是:
在这里插入图片描述
式 (2-1) 中, α为一参数, 若α是一个常数, 此时所进行的交叉运算称为均匀算术交叉;也可以是一个由进化代数决定的变量, 此时进行的是非均匀算术交叉。

2 变异算子
在GA-PSO混合算法中利用粒子群算法的进化公式来重构变异算子, 让个体依据自身迄今最优解和子种群内迄今最优解以及个体进化的速度来决定变异方向和幅度, 使个体在进化的过程中可以将其进化的历史作为导向标。具体实现如下:用xit代替粒子群算法中的xid (第i个粒子在D维空间的位置) , 用∏t中第i位历史最优fimax对应的ximax代替粒子群算法中的Pid (个体最优) , 用子种群的历史最优Fjmax (j为该粒子团在子种群中的位置) 对应的Xjmax代替Pgd (全局最优) , 用ximax的累计差的算术平均Δximax来代替vid。其中ximax的累计差由 (2-2) 式求的:
在这里插入图片描述
则引入变异算子后的粒子群算法粒子更新公式为
在这里插入图片描述
通过上述公式, 我们可以看到在第一部分通过权重因子c1, c2和随机数r1, r2以及信息反馈Ximax预测了变异的幅度和方向;第二部分则具体实施了变异操作。因此, 粒子群算法变异操作具备了自学习能力, 在变异之前的预测, 也使变异操作不再是简单的随机变异, 而是提高单个粒子对进化环境适应能力的变异。

GA-PSO混合优化算法流程图如图2-1,
在这里插入图片描述
图2-1 GA-PSO流程图

⛄二、部分源代码

%% GA 优化 PSO
%% 清空环境
clc;
clear
close all
%% 参数初始化
lenchrom=7; %字符串长度(个体长度),染色体编码长度
pc=0.7; %设置交叉概率,本例中交叉概率是定值,若想设置变化的交叉概率可用表达式表示,或从写一个交叉概率函数,例如用神经网络训练得到的值作为交叉概率
pm=0.3; %设置变异概率,同理也可设置为变化的

%粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;

maxgen=20; % 进化次数
popsize=30; %种群规模

%粒子更新速度
Vmax=1;
Vmin=-1;

%种群
popmax=50;
popmin=-50;

% 变量取值范围
bound=[popmin popmax;popmin popmax;popmin popmax;popmin popmax;popmin popmax;popmin popmax;popmin popmax]; %变量范围

% 优化粒子数目
par_num=7;

%% 产生初始粒子和速度
for i=1:popsize
%随机产生一个种群
pop(i,:)=popmax*rands(1,par_num); %初始种群
V(i,:)=rands(1,par_num); %初始化速度
%计算适应度
fitness(i)=fun(pop(i,:)); %染色体的适应度
end

%找最好的染色体
[bestfitness bestindex]=min(fitness);
zbest=pop(bestindex,:); %全局最佳
gbest=pop; %个体最佳
fitnessgbest=fitness; %个体最佳适应度值
fitnesszbest=bestfitness; %全局最佳适应度值

%% 迭代寻优
for i=1:maxgen
i
for j=1:popsize

    %速度更新 PSO选择更新
    V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
    V(j,find(V(j,:)>Vmax))=Vmax;
    V(j,find(V(j,:)<Vmin))=Vmin;
    
    %种群更新 PSO选择更新
    pop(j,:)=pop(j,:)+0.5*V(j,:);
    pop(j,find(pop(j,:)>popmax))=popmax;
    pop(j,find(pop(j,:)<popmin))=popmin;
    
    % 交叉操作 GA
    GApop=Cross(pc,lenchrom,pop,popsize,bound);
    
    % 变异操作 GA变异
    GApop=Mutation(pm,lenchrom,GApop,popsize,[i maxgen],bound);
    
    pop=GApop; % GA pop --> PSO pop
  
    % 适应度值 --> 约束条件
     if 0.072*pop(j,1)+0.063*pop(j,2)+0.057*pop(j,3)+0.05*pop(j,4)+0.032*pop(j,5)+0.0442*pop(j,6)+0.0675*pop(j,7)<=264.4
        if 128*pop(j,1)+78.1*pop(j,2)+64.1*pop(j,3)+43*pop(j,4)+58.1*pop(j,5)+36.9*pop(j,6)+50.5*pop(j,7)<=69719
                fitness(j)=fun(pop(j,:));
           end
     end

    %个体最优更新
    if fitness(j) < fitnessgbest(j)
        gbest(j,:) = pop(j,:);
        fitnessgbest(j) = fitness(j);
    end
    
    %群体最优更新
    if fitness(j) < fitnesszbest
        zbest = pop(j,:);
        fitnesszbest = fitness(j);
    end
    
end

yy(i)=fitnesszbest;     

end

%% 结果
disp ‘best particle number***’
zbest

%%
plot(yy,‘linewidth’,2);
grid on
title(['适应度曲线 ’ ‘终止代数=’ num2str(maxgen)]);
xlabel(‘进化代数’);ylabel(‘适应度’);

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]]巩永光.粒子群算法与遗传算法的结合研究[J].济宁学院学报. 2008,29(06)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
很抱歉,我没有现成的代码可以提供给你,但是我可以给你一些关于遗传算法粒子群算法求解TSP问题的一般步骤和思路。 1. 问题建模:将TSP问题转化为图论问题,即将城市看作图的节点,城市之间的距离看作图的边权重。这样就可以用图论算法来解决TSP问题。 2. 遗传算法求解:将每个个体看作一个可行的路径,然后用遗传算法求解最优路径。具体来说,遗传算法可以按照以下步骤进行: (1)初始化种群:生成随机的个体(路径),并计算它们的适应度(路径长度); (2)选择操作:通过轮盘赌选择或其他选择方式选择一些个体作为下一代的父代; (3)交叉操作:通过交叉算子对父代进行交叉操作,生成新的个体; (4)变异操作:对新个体进行变异操作,引入新的基因; (5)重复2~4步,直到满足终止条件(如达到最大迭代次数或找到最优解)。 3. 粒子群算法求解:将每个粒子看作一个可行的路径,然后用粒子群算法求解最优路径。具体来说,粒子群算法可以按照以下步骤进行: (1)初始化粒子群:生成随机的粒子(路径),并计算它们的适应度(路径长度); (2)寻找最优解:通过更新粒子的位置和速度,不断寻找最优解; (3)重复2步,直到满足终止条件(如达到最大迭代次数或找到最优解)。 以上是遗传算法粒子群算法求解TSP问题的一般步骤和思路,具体实现需要根据具体问题进行调整。希望对你有所帮助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值