【图像去噪】稀疏表示KSVD图像去噪【含Matlab源码 2016期】

本文介绍了使用Matlab进行低秩稀疏图像重建的理论,包括矩阵的低秩性和稀疏表示模型的应用。重点讨论了基于双字典学习的超分辨率重建算法,以及如何结合低秩约束和字典学习进行图像的初步重建和高频成分恢复。同时,文章给出了部分源代码示例和Matlab版本信息。
摘要由CSDN通过智能技术生成

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、低秩稀疏图像重建简介

1 矩阵的低秩稀疏分解理论
从数学上讲, 矩阵的秩反应了矩阵的固有属性, 矩阵的低秩性是指矩阵的秩相对于矩阵的行数和列数而言很小.低秩矩阵稀疏分解模型是将已知矩阵M (M∈Rm×n) 分解为一个低秩矩阵部分L (L∈Rm×n, rank (L) ≤m, n) 和一个稀疏矩阵部分S (S∈Rm×n) , 即M=L+S.

其优化问题描述如下:
在这里插入图片描述
其中, ‖L‖*表示矩阵L的核范数即L的奇异值之和, ‖S‖1表示矩阵的1范数即S每一列元素绝对值之和的最大值.该问题的求解采用文献中介绍的目前最有效的增广拉格朗日乘子法 (exact augmented Lagrangian method, EALM) 求解.

2 图像的稀疏表示模型
2.1 信号的稀疏表示

信号的稀疏是指在某些变换域内, 信号的大多数变换系数为零或者绝对值很小, 只有少部分变换系数的绝对值较大, 我们就认为信号是稀疏的.信号的稀疏性被广泛应用于数据压缩、通信以及视频图像处理领域.

在变换域字典D∈Rn×K (n≤K) 下, y∈Rn表示为字典原子的稀疏线性组合, 系数向量α∈Rn是稀疏的, 则信号的稀疏表示问题可以描述为:
在这里插入图片描述
其中, l0范数计算的是α中非零元素的个数, 这是一个非凸问题.可以将其凸松弛为l1范数, 则信号的稀疏表示问题可以表示为如下的凸优化问题:
在这里插入图片描述
2.2 基于稀疏表示模型的超分辨率重建
目前最有效的基于稀疏表示的超分辨率重建算法是由Yang等人提出并改进的双字典学习算法.该方法的基本思想是:首先训练样例中的HR图像和对应的LR图像得到一对HR字典和LR字典;然后利用LR字典求解LR图像块的稀疏表示系数;最后利用HR字典和这个稀疏系数来重建对应的HR图像块.

将高分辨率图像x降质为低分辨率图像y的模型表示如下:
在这里插入图片描述
其中, S表示下采样处理, H表示模糊处理, n代表噪声向量.
用Dh表示由一组高分辨率图像样本训练得到的过完备字典, 在Dh下, x的稀疏表示为α, 其式子表达如下:
在这里插入图片描述
但是式 (6) 是一个NP-hard问题, 凸优化为L1范数最小化问题表示如下:
在这里插入图片描述
由图像的降质模型可得到相应的低分辨率图像块表示为:
在这里插入图片描述
根据优化理论, 对低分辨率图像块进行稀疏表示的优化过程可描述为:
在这里插入图片描述
其中, ‖y-Dlα‖22≤ξ为重建高分辨率图像块与输入低分辨率图像块的匹配程度的一个约束.根据对应的高、低分辨率图像块在字典对下有相同的稀疏表示, 则通过x=Dhα即可重建出高分辨率图像^x.通过图像融合技术可进一步得到完整的高分辨率图像.

3 基于低秩约束和字典学习的重建方法
3.1 初步重建

将图像的观察模型表示为:Xl=SBXh+n, 建立从观察到的低分辨率图像Xl重建出高分辨率图像Xh的问题模型:
在这里插入图片描述
图像的超分辨率重建问题具有不适定性, 为此我们需要挖掘更多的图像先验信息解决这一问题.图像的非局部自相似性就是指的自然图像自身所蕴含的先验知识, 它是指在一副自然图像中会存在一些重复或相似的微结构, 这种特性称为图像的的非局部自相似性.对低分辨率图像Xl进行分块, 进行块重叠提取操作, 对于图像中的一个图像块pl0∈Rm×n, 通过块匹配的方法在图像中可以为其提取s个相似块{pi0, pi1, …pic}.将这些相似的图像块排成矩阵Pi∈Rm×n× (c+1) , 由矩阵列向量间的相关性分析我们知道, 矩阵Pi具有天然的低秩性或近似低秩的性质.将图像的自相似性先验信息引入模型 (10) 得到矩阵低秩约束下的图像重建模型:
在这里插入图片描述
Ei表示从图像Xh中提取相似图像块的操作.式 (11) 第二项采用核范数‖·‖*计算矩阵的秩, 即为图像Xh中全部N个小块对应的非局部自相似矩阵的秩总和.

在矩阵Pi中, 不同的图像块与pi0的相似程度不同, 为了充分利用这些图像块间非局部相似先验信息的有效性, 我们引入权重矩阵Wi表征不同图像块间的相似程度.这里图像块之间的相似度一般通过他们之间的欧几里得距离进行测量.其中,

在这里插入图片描述
在上式中第三项Wi对Ei·Xh和H的相似程度进行加权, 第二项通过约矩阵Ei·H的秩, 来达到约束Ei·Xh的秩的目的.式 (13) 为最终的图像超分辨率的重建模型, 所求得的Xh1即为原始高分辨率图像Xh的一个初步估计图像.

3.2 高频成分恢复
初步重建得到的高分辨率图像在低秩矩阵模型的约束下, 可以保证图像在整体结构上与原始高分辨率图像保持一致, 但是在图像信号的成分上仍缺失一些必要的高频分量.这一节的主要工作, 借鉴Yang提出的一种低分辨图像到高分辨率图像的映射方法恢复初步重建出的高分辨率图像中缺失的高频成分.创新点主要是结合图像低秩矩阵稀疏分解理论提出了一种新的字典训练集构建方法.

3.2.1 字典学习
首先搜集一些高质量的高分辨率图像, 作为字典训练集样本.通过对输入的高分辨率图像样本信号进行低秩矩阵稀疏分解, 根据各部分的结构信息特征将低秩部分作为低分辨率图像块样本集的构建输入, 稀疏部分作为高分辨率样本集的构建输入, 进行联合高低分辨率字典训练.图1所示为字典学习过程.
在这里插入图片描述
图1 字典学习过程结构框图
在这里插入图片描述
基于相应的高低图像块之间存在着相同的稀疏表示系数, 得phk≈HD·qk, 从而推导出高频主要字典HD, 通过如下优化方法求解得到:
在这里插入图片描述
其中矩阵Ph和Q分别有集合{phk}和{qk}组成, 这里Q是行满秩的, 则公式 (15) 封闭解为:
在这里插入图片描述
这里, 我们得到最终的高低分辨率字典HD和MD.

** 3.2.2 图像恢复阶段**
将第一步重建得到的高分辨率图像的初始估计Xh1分解为相互重叠的图像块, 构成低分辨率图像块集合{pkl}, 这里我们利用正交匹配追踪算法 (OMP) 在主要低频字典LD下对每一个向量pkl进行稀疏编码, 得到每一个图像块向量的稀疏表示系数集合{qk}
在这里插入图片描述
然后依据phk=HD·qk重构出高分辨率的图像块, 重构模型为
在这里插入图片描述
这里RK算子表示从图像位置为K处提取图像块的操作.上述公式的最小二成解为
在这里插入图片描述
这样我们得到了高分辨率主要高频成分图像XHF, 将其与第一步重建得到的高分辨率图像求和, 得到含有更多高频成分的临时高分辨率图像Xh2.

⛄二、部分源代码

param.L = 3; % number of elements in each linear combination.
param.K = 50; % number of dictionary elements
param.numIteration = 50; % number of iteration to execute the K-SVD algorithm.

param.errorFlag = 0; % decompose signals until a certain error is reached. do not use fix number of coefficients.
%param.errorGoal = sigma;
param.preserveDCAtom = 0;

%%%%%%% creating the data to train on %%%%%%%%
N = 1500; % number of signals to generate
n = 20; % dimension of each data
SNRdB = 20; % level of noise to be added
[param.TrueDictionary, D, x] = gererateSyntheticDictionaryAndData(N, param.L, n, param.K, SNRdB);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% initial dictionary: Dictionary elements %%%%%%%%
param.InitializationMethod = ‘DataElements’;

param.displayProgress = 1;
disp(‘Starting to train the dictionary’);

[Dictionary,output] = KSVD(D,param);

disp([‘The KSVD algorithm retrived ‘,num2str(output.ratio(end)),’ atoms from the original dictionary’]);

[Dictionary,output] = MOD(D,param);

disp(['The MOD algorithm retrived ‘,num2str(output.ratio(end)),’ atoms from the original dic

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]穆瑞娟,徐胜南,王春兴.基于低秩约束和字典学习的图像超分辨率重建[J].山东师范大学学报(自然科学版). 2016,31(04)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 23
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值