技术干货 | AlphaFold/ RoseTTAFold开源复现(2)—AlphaFold流程分析和训练构建

AlphaFold开源后(后续若不做特殊说明,AlphaFold均指AlphaFold2),很多研究团队都在分析、重现和尝试进一步提升。相比于AlphaFold的推理运行起来,AlphaFold的训练重现要复杂得多。主要挑战在于:

1、AlphaFold开源的是推理代码,训练的部分没有公开,但给出了深度网络结构和主要训练超参;

2、AlphaFold训练数据集的构造对训练出好效果非常重要但非常耗时,包含原始训练序列MAS和模型收敛后作为训练样本扩展序列的MSA的搜索,和Template的搜索。每条MSA和Template的搜索从数十分钟到数小时不等,计算成本非常高。

我们尝试从开源的推理代码分析开始,构建典型的训练代码:

 01 

整体结构

AlphaFold包含三大部分:

1、Data蛋白质多序列比对和模板数据处理,

2、Model深度学习网络部分,

3、Relax预测结果再处理部分。

AlphaFold基于Jax实现,在下表给出了在AlphaFold中用到的Jax和Jax之上NN相关的库用到的主要的API和功能。在Data和Relax部分,是AI无关的,下表简洁的罗列了数据集和对应的处理工具。

如果对Jax不熟悉,下图给出了一个基于Jax构建应用算法的简单的模块关系:

在构建训练代码前,需对AlphaFold的整个流程了然于心。下面三幅图,是中间AI相关的部分最主要的三幅图。为了理解方便,在图中用多于原图的部分-追加文字,标明了缩写的含义、主要模块之间的流动的数据、和Recycling具体的实现对应的代码。

 02 

数据处理

训练的数据处理,可以基于推理的数据处理增补,数据集包含:

原始数据:

genetics:
UniRef90: v2020_01 #JackHMMER
MGnify: v2018_12 #JackHMMER
Uniclust30: v2018_08 #HHblits
BFD: only version available #HHblits 
templates:
PDB70: (downloaded 2020-05-13) #HHsearch
PDB: (downloaded 2020-05-14) #Kalign(MSA)

派生数据:

按照论文的技巧,sequence-coordinate数据对不仅有来自于PDB原始的17万多的数据的清洗,还有在训练收敛后,挑选了置信度高的35万左右的数据。这部分的数据的产生,可以从自己的模型训练收敛后排序选择;也可以直接利用AlphaFold提供的模型参数,直接推理无结构的序列来选择;还可以从AlphaFold公开的预测数据集中下载排序选择,从而节省计算资源。

数据处理部分的代码结构:

run_alphafold.py

data_pipeline.py

如下是预测部分的输入数据列表(样例):

predict-input:
 'aatype': (4, 779),
 'residue_index': (4, 779),
 'seq_length': (4,),
 'template_aatype': (4, 4, 779),
 'template_all_atom_masks': (4, 4, 779, 37),
 'template_all_atom_positions': (4, 4, 779, 37, 3),
 'template_sum_probs': (4, 4, 1),
 'is_distillation': (4,),
 'seq_mask': (4, 779),
 'msa_mask': (4, 508, 779),
 'msa_row_mask': (4, 508),
 'random_crop_to_size_seed': (4, 2),
 'template_mask': (4, 4),
 'template_pseudo_beta': (4, 4, 779, 3),
 'template_pseudo_beta_mask': (4, 4, 779),
 'atom14_atom_exists': (4, 779, 14),
 'residx_atom14_to_atom37': (4, 779, 14),
 'residx_atom37_to_atom14': (4, 779, 37),
 'atom37_atom_exists': (4, 779, 37),
 'extra_msa': (4, 5120, 779),
 'extra_msa_mask': (4, 5120, 779),
 'extra_msa_row_mask': (4, 5120),
 'bert_mask': (4, 508, 779),
 'true_msa': (4, 508, 779),
 'extra_has_deletion': (4, 5120, 779),
 'extra_deletion_value': (4, 5120, 779),
 'msa_feat': (4, 508, 779, 49),
 'target_feat': (4, 779, 22)

如果复用AlphaFold的代码实现train逻辑,输入数据上还需要增加一些字段的处理:如pseudo_beta等target信息,当然可以另行修改自己的框架的表示。

 03 

主体网络

文首附上了主体网络的结构图,AlphaFold的代码实现部分,结构如下:

model.py

整个模型的构建和关键点,如下图:

关于AlphaFold技术上什么点,让效果这么好,网上解读甚多。最客观的解读其实论文的对主要技术点的消融实验,很能说明问题。如果非要最简洁的总结,我们认为:让各种各层信息在整个网络中来回流动是最重要的,各种信息包含Seq + MSA+ (Pair) + Template,各层信息的各种功能流动是指各种Iteration + Recycling + Multiplication + Production。

在训练代码的构建部分,由于是train的逻辑,在AlphaFold的构造参数中,需要设置:is_training=True, compute_loss=True,这样才会讲各层各处的复合loss给返回出来,计算梯度和让优化器优化权重。

 04 

结构精化

 05 

训练构建

在数据准备好后,要实现自己的训练,有两种做法:在不修改网络结构的情况下,可以从AlphaFold公开的模型参数上开始进一步训练优化;如果要修改网络,一个最基本的训练逻辑,通过实现两部分可以开始从头训练:

1、构建自己的数据集和加载器。最简单的做法,是从pipeline.DataPipeline开始修改,增加上训练所需的target相关的信息的读取。

2、类似于推理的RunModel,实现自己的TrainModel,其重要逻辑包含:模型的代码直接利用开源的推理的:

modules.AlphaFold(model_config.model)(batch, is_training=True, compute_loss=True, ensemble_representations=True, return_representations=False).

优化器用optax@jax实现。

如上,可以基于现有推理代码,构建一个最简单的训练版本。

MindSpore官方资料

官方QQ群 : 486831414

官网:https://www.mindspore.cn/

Gitee : https : //gitee.com/mindspore/mindspore

GitHub : https://github.com/mindspore-ai/mindspore

论坛:https://bbs.huaweicloud.com/forum/forum-1076-1.html 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Spark Streaming 和 Flink 都是流处理框架,但在一些方面有所不同。 1. 数据处理模型 Spark Streaming 基于批处理模型,将流数据分成一批批进行处理。而 Flink 则是基于流处理模型,可以实时处理数据流。 2. 窗口处理 Spark Streaming 的窗口处理是基于时间的,即将一段时间内的数据作为一个窗口进行处理。而 Flink 的窗口处理可以基于时间和数据量,可以更加灵活地进行窗口处理。 3. 状态管理 Spark Streaming 的状态管理是基于 RDD 的,需要将状态存储在内存中。而 Flink 的状态管理是基于内存和磁盘的,可以更加灵活地管理状态。 4. 容错性 Flink 的容错性比 Spark Streaming 更加强大,可以在节点故障时快速恢复,而 Spark Streaming 则需要重新计算整个批次的数据。 总的来说,Flink 在流处理方面更加强大和灵活,而 Spark Streaming 则更适合批处理和数据仓库等场景。 ### 回答2: Spark Streaming 和 Flink 都是流处理框架,它们都支持低延迟的流处理和高吞吐量的批处理。但是,它们在处理数据流的方式和性能上有许多不同之处。下面是它们的详细比较: 1. 处理模型 Spark Streaming 采用离散化流处理模型(DPM),将长周期的数据流划分为离散化的小批量,每个批次的数据被存储在 RDD 中进行处理,因此 Spark Streaming 具有较好的容错性和可靠性。而 Flink 采用连续流处理模型(CPM),能够在其流处理过程中进行事件时间处理和状态管理,因此 Flink 更适合处理需要精确时间戳和状态管理的应用场景。 2. 数据延迟 Spark Streaming 在处理数据流时会有一定的延迟,主要是由于对数据进行缓存和离散化处理的原因。而 Flink 的数据延迟比 Spark Streaming 更低,因为 Flink 的数据处理和计算过程是实时进行的,不需要缓存和离散化处理。 3. 机器资源和负载均衡 Spark Streaming 采用了 Spark 的机器资源调度和负载均衡机制,它们之间具有相同的容错和资源管理特性。而 Flink 使用 Yarn 和 Mesos 等分布式计算框架进行机器资源调度和负载均衡,因此 Flink 在大规模集群上的性能表现更好。 4. 数据窗口处理 Spark Streaming 提供了滑动、翻转和窗口操作等灵活的数据窗口处理功能,可以使用户更好地控制数据处理的逻辑。而 Flink 也提供了滚动窗口和滑动窗口处理功能,但相对于 Spark Streaming 更加灵活,可以在事件时间和处理时间上进行窗口处理,并且支持增量聚合和全量聚合两种方式。 5. 集成生态系统 Spark Streaming 作为 Apache Spark 的一部分,可以充分利用 Spark 的分布式计算和批处理生态系统,并且支持许多不同类型的数据源,包括Kafka、Flume和HDFS等。而 Flink 提供了完整的流处理生态系统,包括流SQL查询、流机器学习和流图形处理等功能,能够灵活地适应不同的业务场景。 总之,Spark Streaming 和 Flink 都是出色的流处理框架,在不同的场景下都能够发挥出很好的性能。选择哪种框架取决于实际需求和业务场景。 ### 回答3: Spark Streaming和Flink都是流处理引擎,但它们的设计和实现方式有所不同。在下面的对比中,我们将比较这两种流处理引擎的主要特点和差异。 1. 处理模型 Spark Streaming采用离散流处理模型,即将数据按时间间隔分割成一批一批数据进行处理。这种方式可以使得Spark Streaming具有高吞吐量和低延迟,但也会导致数据处理的粒度比较粗,难以应对大量实时事件的高吞吐量。 相比之下,Flink采用连续流处理模型,即数据的处理是连续的、实时的。与Spark Streaming不同,Flink的流处理引擎能够应对各种不同的实时场景。Flink的实时流处理能力更强,因此在某些特定的场景下,它的性能可能比Spark Streaming更好。 2. 窗口计算 Spark Streaming内置了许多的窗口计算支持,如滑动窗口、滚动窗口,但支持的窗口计算的灵活性较低,只适合于一些简单的窗口计算。而Flink的窗口计算支持非常灵活,可以支持任意窗口大小或滑动跨度。 3. 数据库支持 在处理大数据时,存储和读取数据是非常重要的。Spark Streaming通常使用HDFS作为其数据存储底层的系统。而Flink支持许多不同的数据存储形式,包括HDFS,以及许多其他开源和商业的数据存储,如Kafka、Cassandra和Elasticsearch等。 4. 处理性能 Spark Streaming的性能比Flink慢一些,尤其是在特定的情况下,例如在处理高吞吐量的数据时,在某些情况下可能受制于分批处理的架构。Flink通过其流处理模型和不同的调度器和优化器来支持更高效的实时数据处理。 5. 生态系统 Spark有着庞大的生态系统,具有成熟的ML库、图处理库、SQL框架等等。而Flink的生态系统相对较小,但它正在不断地发展壮大。 6. 规模性 Spark Streaming适用于规模小且不太复杂的项目。而Flink可扩展性更好,适用于更大、更复杂的项目。Flink也可以处理无限制的数据流。 综上所述,Spark Streaming和Flink都是流处理引擎,它们有各自的优缺点。在选择使用哪一个流处理引擎时,需要根据实际业务场景和需求进行选择。如果你的业务场景较为复杂,需要处理海量数据并且需要比较灵活的窗口计算支持,那么Flink可能是更好的选择;如果你只需要简单的流处理和一些通用的窗口计算,Spark Streaming是更为简单的选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值