ZED2 + SGMB【使用zed2的摄像头,立体匹配使用SGBM算法,增加鼠标返回事件】

不多废话直接上代码

import cv2
import numpy as np
import time
import random
import math
import pyzed.sl as sl

# -----------------------------------双目相机的基本参数---------------------------------------------------------
#   left_camera_matrix          左相机的内参矩阵
#   right_camera_matrix         右相机的内参矩阵
#
#   left_distortion             左相机的畸变系数    格式(K1,K2,P1,P2,0)
#   right_distortion            右相机的畸变系数
# -------------------------------------------------------------------------------------------------------------
# 左镜头的内参,如焦距
left_camera_matrix = np.array([[516.5066236, -1.444673028, 320.2950423], [0, 516.5816117, 270.7881873], [0., 0., 1.]])
right_camera_matrix = np.array([[511.8428182, 1.295112628, 317.310253], [0, 513.0748795, 269.5885026], [0., 0., 1.]])

# 畸变系数,K1、K2、K3为径向畸变,P1、P2为切向畸变
left_distortion = np.array([[-0.046645194, 0.077595167, 0.012476819, -0.000711358, 0]])
right_distortion = np.array([[-0.061588946, 0.122384376, 0.011081232, -0.000750439, 0]])

# 旋转矩阵
R = np.array([[0.999911333, -0.004351508, 0.012585312],
              [0.004184066, 0.999902792, 0.013300386],
              [-0.012641965, -0.013246549, 0.999832341]])
# 平移矩阵
T = np.array([-120.3559901, -0.188953775, -0.662073075])

size = (640, 480)

# 畸变矫正与立体矫正
R1, R2, P1, P2, Q, validPixROI1, validPixROI2 = cv2.stereoRectify(left_camera_matrix, left_distortion,
                                                                  right_camera_matrix, right_distortion, size, R,
                                                                  T)

# 校正查找映射表,将原始图像和校正后的图像上的点一一对应起来
left_map1, left_map2 = cv2.initUndistortRectifyMap(left_camera_matrix, left_distortion, R1, P1, size, cv2.CV_16SC2)
right_map1, right_map2 = cv2.initUndistortRectifyMap(right_camera_matrix, right_distortion, R2, P2, size, cv2.CV_16SC2)
print(Q)
WIN_NAME = 'Deep disp'
cv2.namedWindow(WIN_NAME, cv2.WINDOW_AUTOSIZE)


# --------------------------鼠标回调函数---------------------------------------------------------
#   event               鼠标事件
#   param               输入参数
# -----------------------------------------------------------------------------------------------
def onmouse_pick_points(event, x, y, flags, param):
    if event == cv2.EVENT_LBUTTONDOWN:
        threeD = param
        print('\n像素坐标 x = %d, y = %d' % (x, y))
        # print("世界坐标是:", threeD[y][x][0], threeD[y][x][1], threeD[y][x][2], "mm")
        print("世界坐标xyz 是:", threeD[y][x][0] / 1000.0, threeD[y][x][1] / 1000.0, threeD[y][x][2] / 1000.0, "m")

        distance = math.sqrt(threeD[y][x][0] ** 2 + threeD[y][x][1] ** 2 + threeD[y][x][2] ** 2)
        distance = distance / 1000.0  # mm -> m
        print("距离是:", distance, "m")


# 读取视频
fps = 0.0
cam = sl.Camera()
init = sl.InitParameters()
init.camera_resolution = sl.RESOLUTION.HD720

status = cam.open(init)
if status != sl.ERROR_CODE.SUCCESS:
    print(repr(sl))
    cam.close()
    exit(1)

runtime = sl.RuntimeParameters()
image_left = sl.Mat()
image_right = sl.Mat()

while True:
    cam.grab(runtime)
    # 开始计时
    t1 = time.time()
    # 左右两张图片
    cam.retrieve_image(image_left, sl.VIEW.LEFT)
    cam.retrieve_image(image_right, sl.VIEW.RIGHT)
    frame1 = image_left.get_data()
    frame2 = image_right.get_data()

    # 将BGR格式转换成灰度图片,用于畸变矫正
    imgL = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY)
    imgR = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY)

    # 重映射,就是把一幅图像中某位置的像素放置到另一个图片指定位置的过程。
    # 依据MATLAB测量数据重建无畸变图片,输入图片要求为灰度图
    img1_rectified = cv2.remap(imgL, left_map1, left_map2, cv2.INTER_LINEAR)
    img2_rectified = cv2.remap(imgR, right_map1, right_map2, cv2.INTER_LINEAR)

    # 转换为opencv的BGR格式
    imageL = cv2.cvtColor(img1_rectified, cv2.COLOR_GRAY2BGR)
    imageR = cv2.cvtColor(img2_rectified, cv2.COLOR_GRAY2BGR)

    # ------------------------------------SGBM算法----------------------------------------------------------
    #   blockSize                   深度图成块,blocksize越低,其深度图就越零碎,0<blockSize<10
    #   img_channels                BGR图像的颜色通道,img_channels=3,不可更改
    #   numDisparities              SGBM感知的范围,越大生成的精度越好,速度越慢,需要被16整除,如numDisparities
    #                               取16、32、48、64等
    #   mode                        sgbm算法选择模式,以速度由快到慢为:STEREO_SGBM_MODE_SGBM_3WAY、
    #                               STEREO_SGBM_MODE_HH4、STEREO_SGBM_MODE_SGBM、STEREO_SGBM_MODE_HH。精度反之
    # ------------------------------------------------------------------------------------------------------
    blockSize = 3
    img_channels = 3
    stereo = cv2.StereoSGBM_create(minDisparity=1,
                                   numDisparities=64,
                                   blockSize=blockSize,
                                   P1=8 * img_channels * blockSize * blockSize,
                                   P2=32 * img_channels * blockSize * blockSize,
                                   disp12MaxDiff=-1,
                                   preFilterCap=1,
                                   uniquenessRatio=10,
                                   speckleWindowSize=100,
                                   speckleRange=100,
                                   mode=cv2.STEREO_SGBM_MODE_HH)
    # 计算视差
    disparity = stereo.compute(img1_rectified, img2_rectified)

    # 归一化函数算法,生成深度图(灰度图)
    disp = cv2.normalize(disparity, disparity, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)

    # 生成深度图(颜色图)
    dis_color = disparity
    dis_color = cv2.normalize(dis_color, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
    dis_color = cv2.applyColorMap(dis_color, 2)

    # 计算三维坐标数据值
    threeD = cv2.reprojectImageTo3D(disparity, Q, handleMissingValues=True)
    # 计算出的threeD,需要乘以16,才等于现实中的距离
    threeD = threeD * 16

    # 鼠标回调事件
    cv2.namedWindow("depth", cv2.WINDOW_AUTOSIZE)
    cv2.setMouseCallback("depth", onmouse_pick_points, threeD)

    cv2.imshow("depth", dis_color)
    cv2.imshow("left", frame1)
    cv2.imshow(WIN_NAME, disp)  # 显示深度图的双目画面
    # 若键盘按下q则退出播放
    if cv2.waitKey(1) & 0xff == ord('q'):
        break

# 关闭所有窗口
cv2.destroyAllWindows()

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值