不多废话直接上代码
import cv2
import numpy as np
import time
import random
import math
import pyzed.sl as sl
# -----------------------------------双目相机的基本参数---------------------------------------------------------
# left_camera_matrix 左相机的内参矩阵
# right_camera_matrix 右相机的内参矩阵
#
# left_distortion 左相机的畸变系数 格式(K1,K2,P1,P2,0)
# right_distortion 右相机的畸变系数
# -------------------------------------------------------------------------------------------------------------
# 左镜头的内参,如焦距
left_camera_matrix = np.array([[516.5066236, -1.444673028, 320.2950423], [0, 516.5816117, 270.7881873], [0., 0., 1.]])
right_camera_matrix = np.array([[511.8428182, 1.295112628, 317.310253], [0, 513.0748795, 269.5885026], [0., 0., 1.]])
# 畸变系数,K1、K2、K3为径向畸变,P1、P2为切向畸变
left_distortion = np.array([[-0.046645194, 0.077595167, 0.012476819, -0.000711358, 0]])
right_distortion = np.array([[-0.061588946, 0.122384376, 0.011081232, -0.000750439, 0]])
# 旋转矩阵
R = np.array([[0.999911333, -0.004351508, 0.012585312],
[0.004184066, 0.999902792, 0.013300386],
[-0.012641965, -0.013246549, 0.999832341]])
# 平移矩阵
T = np.array([-120.3559901, -0.188953775, -0.662073075])
size = (640, 480)
# 畸变矫正与立体矫正
R1, R2, P1, P2, Q, validPixROI1, validPixROI2 = cv2.stereoRectify(left_camera_matrix, left_distortion,
right_camera_matrix, right_distortion, size, R,
T)
# 校正查找映射表,将原始图像和校正后的图像上的点一一对应起来
left_map1, left_map2 = cv2.initUndistortRectifyMap(left_camera_matrix, left_distortion, R1, P1, size, cv2.CV_16SC2)
right_map1, right_map2 = cv2.initUndistortRectifyMap(right_camera_matrix, right_distortion, R2, P2, size, cv2.CV_16SC2)
print(Q)
WIN_NAME = 'Deep disp'
cv2.namedWindow(WIN_NAME, cv2.WINDOW_AUTOSIZE)
# --------------------------鼠标回调函数---------------------------------------------------------
# event 鼠标事件
# param 输入参数
# -----------------------------------------------------------------------------------------------
def onmouse_pick_points(event, x, y, flags, param):
if event == cv2.EVENT_LBUTTONDOWN:
threeD = param
print('\n像素坐标 x = %d, y = %d' % (x, y))
# print("世界坐标是:", threeD[y][x][0], threeD[y][x][1], threeD[y][x][2], "mm")
print("世界坐标xyz 是:", threeD[y][x][0] / 1000.0, threeD[y][x][1] / 1000.0, threeD[y][x][2] / 1000.0, "m")
distance = math.sqrt(threeD[y][x][0] ** 2 + threeD[y][x][1] ** 2 + threeD[y][x][2] ** 2)
distance = distance / 1000.0 # mm -> m
print("距离是:", distance, "m")
# 读取视频
fps = 0.0
cam = sl.Camera()
init = sl.InitParameters()
init.camera_resolution = sl.RESOLUTION.HD720
status = cam.open(init)
if status != sl.ERROR_CODE.SUCCESS:
print(repr(sl))
cam.close()
exit(1)
runtime = sl.RuntimeParameters()
image_left = sl.Mat()
image_right = sl.Mat()
while True:
cam.grab(runtime)
# 开始计时
t1 = time.time()
# 左右两张图片
cam.retrieve_image(image_left, sl.VIEW.LEFT)
cam.retrieve_image(image_right, sl.VIEW.RIGHT)
frame1 = image_left.get_data()
frame2 = image_right.get_data()
# 将BGR格式转换成灰度图片,用于畸变矫正
imgL = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY)
imgR = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY)
# 重映射,就是把一幅图像中某位置的像素放置到另一个图片指定位置的过程。
# 依据MATLAB测量数据重建无畸变图片,输入图片要求为灰度图
img1_rectified = cv2.remap(imgL, left_map1, left_map2, cv2.INTER_LINEAR)
img2_rectified = cv2.remap(imgR, right_map1, right_map2, cv2.INTER_LINEAR)
# 转换为opencv的BGR格式
imageL = cv2.cvtColor(img1_rectified, cv2.COLOR_GRAY2BGR)
imageR = cv2.cvtColor(img2_rectified, cv2.COLOR_GRAY2BGR)
# ------------------------------------SGBM算法----------------------------------------------------------
# blockSize 深度图成块,blocksize越低,其深度图就越零碎,0<blockSize<10
# img_channels BGR图像的颜色通道,img_channels=3,不可更改
# numDisparities SGBM感知的范围,越大生成的精度越好,速度越慢,需要被16整除,如numDisparities
# 取16、32、48、64等
# mode sgbm算法选择模式,以速度由快到慢为:STEREO_SGBM_MODE_SGBM_3WAY、
# STEREO_SGBM_MODE_HH4、STEREO_SGBM_MODE_SGBM、STEREO_SGBM_MODE_HH。精度反之
# ------------------------------------------------------------------------------------------------------
blockSize = 3
img_channels = 3
stereo = cv2.StereoSGBM_create(minDisparity=1,
numDisparities=64,
blockSize=blockSize,
P1=8 * img_channels * blockSize * blockSize,
P2=32 * img_channels * blockSize * blockSize,
disp12MaxDiff=-1,
preFilterCap=1,
uniquenessRatio=10,
speckleWindowSize=100,
speckleRange=100,
mode=cv2.STEREO_SGBM_MODE_HH)
# 计算视差
disparity = stereo.compute(img1_rectified, img2_rectified)
# 归一化函数算法,生成深度图(灰度图)
disp = cv2.normalize(disparity, disparity, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
# 生成深度图(颜色图)
dis_color = disparity
dis_color = cv2.normalize(dis_color, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
dis_color = cv2.applyColorMap(dis_color, 2)
# 计算三维坐标数据值
threeD = cv2.reprojectImageTo3D(disparity, Q, handleMissingValues=True)
# 计算出的threeD,需要乘以16,才等于现实中的距离
threeD = threeD * 16
# 鼠标回调事件
cv2.namedWindow("depth", cv2.WINDOW_AUTOSIZE)
cv2.setMouseCallback("depth", onmouse_pick_points, threeD)
cv2.imshow("depth", dis_color)
cv2.imshow("left", frame1)
cv2.imshow(WIN_NAME, disp) # 显示深度图的双目画面
# 若键盘按下q则退出播放
if cv2.waitKey(1) & 0xff == ord('q'):
break
# 关闭所有窗口
cv2.destroyAllWindows()