Cadence Allegro如何制作椭圆形通孔焊盘?

	一般常规的通孔焊盘大多数是圆形孔,但也有一比较特殊的通孔焊盘,比如DC接口座子,不常见的电源IC焊盘等。下面以绘制一个外长轴为10mm,外短轴为6mm,钻孔的长轴6为mm,钻孔的短轴为4mm椭圆形通孔焊盘举例说明:如下图:

1,打开软件 Pad Designer,修改是设计单位为Millimeter,Decimal place 是精确度位数。如下图:

在这里插入图片描述

2、Hole Type:文本框设置如下:

在这里插入图片描述

Drill,Plating表示金属孔, non-plated表示为非金属孔。

Drill diameter表示钻孔直径。
Dill/Slot symbol :钻孔标识
Figure : NULL空, Circle 圆形, Square 正方形, 等

Characters:标识图形内的符号文字

Width:符号文字的宽

Height:符号文字的高

Regular pad :设定焊盘的尺寸

Thermal Relief:设定散热孔尺寸(正片设计不需要制作此好盘)

Anti Pad:设定焊盘的隔离孔尺寸(正片设计不需要制作此好盘)

Shape: 选择焊盘和隔离孔的外形

<
在使用TensorFlow进行深度学习模型构建时,上采样(upsampling)是一个常见的需求,尤其是在图像分割、生成对抗网络(GANs)等任务中。传统的上采样方法之一是转置卷积(transposed convolution),也称为反卷积(deconvolution),但是这种操作可能会导致棋效应(checkerboard artifacts)等问题。双线性插值(bilinear interpolation)是另一种常用的上采样技术,它通过计算输入图像中相邻像素点的线性组合来计算输出图像的新像素值,可以有效地缓解棋效应。 双线性插值的原理是在输出图像的每个像素位置上,根据该位置在输入图像中的映射坐标,找到输入图像中最接近的四个像素点,然后根据这四个点的位置和像素值,通过线性插值计算出输出像素的值。这种方法不涉及权重参数的学习,因而计算简单,速度快,并且可以产生相对平滑的输出图像。 在TensorFlow中,你可以使用`tf.image.resize`函数来实现双线性插值。以下是一个使用该函数进行上采样的简单示例: ```python import tensorflow as tf # 假设input_tensor是一个已经存在的Tensor对象,其尺寸需要被上采样 input_tensor = ... # 使用双线性插值进行上采样 upsampled_tensor = tf.image.resize(input_tensor, [new_height, new_width], method=tf.image.ResizeMethod.BILINEAR) # 接下来可以将upsampled_tensor用于后续的网络层或任务中 ``` 在这个例子中,`new_height`和`new_width`表示你希望输出张量的高和宽,`method=tf.image.ResizeMethod.BILINEAR`参数指定了使用双线性插值作为上采样的方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值