【高等数学】多元函数微分法及其应用2

本文还有第一部分,包含多元函数的基本概念,偏导数,全微分,多元复合函数求导法则,隐函数求导公式,多元函数微分学的几何应用

方向导数与梯度

一、方向导数

方向导数的定义

如果函数 f ( x , y ) f(x,y) f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)处可微分,那么函数在该点沿任一方向 l l l的方向导数存在,为 ∂ f ∂ l ∣ ( x 0 , y 0 ) = f x ′ ( x 0 , y 0 ) cos ⁡ α + f y ′ ( x 0 , y 0 ) cos ⁡ β \frac{\partial f}{\partial l}\Big|_{(x_0,y_0)}=f'_x(x_0,y_0)\cos\alpha+f'_y(x_0,y_0)\cos\beta lf (x0,y0)=fx(x0,y0)cosα+fy(x0,y0)cosβ,其中 cos ⁡ α 和 cos ⁡ β \cos\alpha和\cos\beta cosαcosβ是方向 l l l的方向余弦

例1:求函数 z = x 2 + y 2 z=x^2+y^2 z=x2+y2在点 ( 1 , 2 ) (1,2) (1,2)处沿从点 ( 1 , 2 ) (1,2) (1,2)到点 ( 2 + 2 3 ) (2+2\sqrt3) (2+23 )的方向的方向导数
l = ( 1 , 3 ) \boldsymbol l=(1,\sqrt3) l=(1,3 )
则与 l \boldsymbol l l同向的单位向量 e 1 = ( 1 2 , 3 2 ) \boldsymbol {e_1}=(\frac12,\frac{\sqrt3}2) e1=(21,23 )
∂ z ∂ x ∣ ( 1 , 2 ) = 2 x ∣ ( 1 , 2 ) = 2 \frac{\partial z}{\partial x}\Big|_{(1,2)}=2x\Big|_{(1,2)}=2 xz (1,2)=2x (1,2)=2
∂ z ∂ y ∣ ( 1 , 2 ) = 2 y ∣ ( 1 , 2 ) = 4 \frac{\partial z}{\partial y}\Big|_{(1,2)}=2y\Big|_{(1,2)}=4 yz (1,2)=2y (1,2)=4
∂ z ∂ l ∣ ( 1 , 2 ) = 2 × 1 2 + 4 × 3 2 = 1 + 2 3 \frac{\partial z}{\partial l}\Big|_{(1,2)}=2\times\frac12+4\times\frac{\sqrt3}2=1+2\sqrt3 lz (1,2)=2×21+4×23 =1+23

二、梯度

梯度的定义

设函数 f ( x , y ) f(x,y) f(x,y)在平面区域 D D D内具有一阶连续偏导数,则对于每一点 P 0 ( x 0 , y 0 ) ∈ D P_0(x_0,y_0)\in D P0(x0,y0)D,都可定出一个向量 f x ′ ( x 0 , y 0 ) i + f y ′ ( x 0 , y 0 ) j f'_x(x_0,y_0)\boldsymbol i+f'_y(x_0,y_0)\boldsymbol j fx(x0,y0)i+fy(x0,y0)j,称为函数 f ( x , y ) f(x,y) f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)的梯度,记作 g r a d f ( x 0 , y 0 ) \boldsymbol{grad}f(x_0,y_0) gradf(x0,y0),即 g r a d f ( x 0 , y 0 ) = f x ′ ( x 0 , y 0 ) i + f y ′ ( x 0 , y 0 ) j \boldsymbol{grad}f(x_0,y_0)=f'_x(x_0,y_0)\boldsymbol i+f'_y(x_0,y_0)\boldsymbol j gradf(x0,y0)=fx(x0,y0)i+fy(x0,y

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值