目标检测简介

目标检测是图像理解的重要环节,涉及分类、检测和分割。经典的两阶段检测模型包括R-CNN系列,如R-CNN、Fast R-CNN和Faster R-CNN,以及单阶段模型YOLO和SSD。两阶段模型通过区域提议和分类,而单阶段模型直接从图像获取预测结果,速度快但可能对小目标检测效果不佳。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#目标检测简介

参考博客

理解一张图片,有三个主要的层次。
这里写图片描述

  • 分类(Classification)
    分类即是将图像结构化为某一类别的信息,用事先确定好的类别(string)或实例ID来描述图片。这一任务是最简单、最基础的图像理解任务,也是深度学习模型最先取得突破和实现大规模应用的任务。其中,ImageNet是最权威的评测集,每年的ILSVRC催生了大量的优秀深度网络结构,为其他任务提供了基础。在应用领域,人脸、场景的识别等都可以归为分类任务。
  • 检测(Detection)
    分类任务关心整体,给出的是整张图片的内容描述,而检测则关注特定的物体目标,要求同时获得这一目标的类别信息和位置信息。相比分类,检测给出的是对图片前景和背景的理解,我们需要从背景中分离出感兴趣的目标,并确定这一目标的描述(类别和位置),因而,检测模型的输出是一个列表,列表的每一项使用一个数据组给出检出目标的类别和位置(常用矩形检测框的坐标表示)。
  • 分割(Segmentation)
    分割包括语义分割(semantic segmentation)和实例分割(instance segmentation),前者是对前背景分离的拓展,要求分离开具有不同语义的图像部分,而后者是检测任务的拓展,要求描述出目标的轮廓(相比检测框更为精细)。分割是对图像的像素级描述,它赋予每个像素类别(实例)意义,适用于理解要求较高的场景,如无人驾驶中对道路和非道路的分割。

目标检测,即是图像理解的中层次。

##目标检测经典工作回顾
这里写图片描述
###两阶段(2-stage)检测模型
两阶段模型因其对图片的两阶段处理得名,也称为基于区域(Region-based)的方法,R-CNN系列模型是这一类型的代表。
####R-CNN: R-CNN系列的开山之作
论文链接: Rich feature hierarchies for accurate object detection and semantic segmentation
论文的两大贡献:

  • CNN可用于基于区域的定位和分割物体;
  • 监督训练样本数紧缺时,在额外的数据上预训练的模型经过fine-tuning可以取得很好的效果。

第一个贡献影响了之后几乎所有2-stage方法,而第二个贡献中用分类任务(Imagenet)中训练好的模型作为基网络,在检测问题上fine-tuning的做法也在之后的工作中一直沿用。
传统的计算机视觉方法常用精心设计的手工特征(如SIFT, HOG)描述图像,而深度学

### 3D目标检测技术概述 #### 定义与基本概念 3D目标检测旨在识别并定位图像或点云中的三维物体,不仅提供其类别信息还给出精确的空间位置和尺寸。对于自动驾驶场景下的物体而言,大多数情况下这些物体会被假定为水平放置于地面之上[^1]。 #### 自由度分析 理论上讲,一个完整的3D边界框具有九个自由度:三个用于表示中心坐标\( (x,y,z) \),另外三个对应着绕各轴的旋转角(roll, pitch, yaw),最后三个则决定了包围盒沿各个方向上的尺度(dx,dy,dz)[^1]。然而,在实际应用中特别是针对路面行驶的目标时,由于它们通常保持直立状态而无需考虑翻滚(pitch)以及侧倾(roll)的变化,因此只需要关注七个参数来描述对象姿态——即所谓的7D pose估计问题[(x, y, z, dx, dy, dz, heading)]。 #### 数据源与输入形式 根据不同传感器获取的信息不同,3D目标检测可以基于多种类型的输入数据完成: - **激光雷达(LiDAR)**产生的密集型点云能够很好地捕捉周围环境的真实几何特征; - **RGB-D相机**除了颜色外还能记录下距离信息; - 单目或多视角彩色图像是另一种常见但更具挑战性的选择,因为从单一视点重建深度需要额外假设或者约束条件[^5]; #### 方法分类与发展历程 随着硬件设备的进步和技术的发展,出现了许多有效的解决策略: - 利用多模态融合的方式综合处理来自不同类型感知器的数据流; - 基于卷积神经网络(CNNs)的方法逐渐成为主流趋势之一,这类方法能够在端到端框架内同时执行特征提取与空间变换操作; - 特殊设计架构如PointPillars等专门面向稀疏分布特点进行了优化改进以适应特定应用场景需求[^2]; #### 应用领域 该技术广泛应用于智能交通系统ITS(Intelligent Transportation Systems)当中,比如辅助驾驶ADAS(Advanced Driver Assistance Systems)功能模块里不可或缺的一部分;除此之外还包括但不限于无人机避障导航、机器人自主移动等领域[^4]。 ```python # Python代码示例展示如何加载LiDAR点云文件(.pcd格式) import open3d as o3d def load_point_cloud(file_path): pcd = o3d.io.read_point_cloud(file_path) return pcd if __name__ == "__main__": file_name = 'example.pcd' point_cloud_data = load_point_cloud(file_name) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值