拉格朗日乘数法,拉格朗日对偶和KKT约束

本文介绍了拉格朗日乘数法及其在解决约束优化问题中的应用,如求解距离原点最近的点。接着讨论了拉格朗日对偶问题,展示了如何通过构造拉格朗日函数来消除约束条件,并定义了原始问题和对偶问题之间的关系。最后,阐述了Karush-Kuhn-Tucker(KKT)条件,作为判断原始问题和对偶问题极值相等时必须满足的条件,特别是对于凸优化问题和仿射函数约束的情况。
摘要由CSDN通过智能技术生成
拉格朗日乘数法

拉格朗日乘数法是求变量在一个或多个约束下的极值问题

eg:已知双曲线 x y = 3 xy=3 xy=3,求曲线上距离原点最近的点。
由题我们可以得出如下式子:
m i n f ( x , y ) = x 2 + y 2 min f(x,y) =x^{2}+y^{2} minf(x,y)=x2+y2
\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad subject to constraint x y = 3 xy=3 xy=3 \quad → \to \quad g ( x , y ) = 3 g(x,y)=3 g(x,y)=3
解:
求极值,意味着两条线在极值点处相切,即 Δ f = λ ∗ Δ g {\Delta f} = \lambda * \Delta g Δf=λΔg
Δ f ( x , y ) Δ x = 2 x = λ ∗ Δ g ( x , y ) Δ x = λ ∗ y \frac{\Delta f\left ( x,y\right )}{\Delta x} = 2x = \lambda * \frac{\Delta g\left ( x,y\right )}{\Delta x} = \lambda * y ΔxΔf(x,y)=2x=λΔxΔg(x,y)=λy
Δ f ( x , y ) Δ y = 2 y = λ ∗ Δ g ( x , y ) Δ y = λ ∗ x \frac{\Delta f\left ( x,y\right )}{\Delta y} = 2y = \lambda * \frac{\Delta g\left ( x,y\right )}{\Delta y} = \lambda * x ΔyΔf(x,y)=2y=λΔyΔg(x,y)=λx
g ( x , y ) = 3 g(x,y) = 3 g(x,y)=3
2 x − λ y = 0 2x-\lambda y =0 2xλy=0
λ x − 2 y = 0 \lambda x-2y=0 λx2y=0
x y = 3 xy=3 xy=3
上述三个方程可以化解成矩阵进行求解:
[ 2 − λ

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值